classifier_data_lib.py 55.7 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
16
17
18
"""BERT library to process data for classification task."""

import collections
import csv
19
import importlib
stephenwu's avatar
stephenwu committed
20
import json
21
22
23
24
import os

from absl import logging
import tensorflow as tf
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
25
import tensorflow_datasets as tfds
26

Le Hou's avatar
Le Hou committed
27
from official.nlp.tools import tokenization
28
29
30


class InputExample(object):
31
  """A single training/test example for simple seq regression/classification."""
32

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
33
34
35
36
37
38
  def __init__(self,
               guid,
               text_a,
               text_b=None,
               label=None,
               weight=None,
Chen Chen's avatar
Chen Chen committed
39
               example_id=None):
40
41
42
43
44
45
46
47
    """Constructs a InputExample.

    Args:
      guid: Unique id for the example.
      text_a: string. The untokenized text of the first sequence. For single
        sequence tasks, only this sequence must be specified.
      text_b: (Optional) string. The untokenized text of the second sequence.
        Only must be specified for sequence pair tasks.
48
49
50
      label: (Optional) string for classification, float for regression. The
        label of the example. This should be specified for train and dev
        examples, but not for test examples.
Maxim Neumann's avatar
Maxim Neumann committed
51
52
      weight: (Optional) float. The weight of the example to be used during
        training.
Chen Chen's avatar
Chen Chen committed
53
54
      example_id: (Optional) int. The int identification number of example in
        the corpus.
55
56
57
58
59
    """
    self.guid = guid
    self.text_a = text_a
    self.text_b = text_b
    self.label = label
Maxim Neumann's avatar
Maxim Neumann committed
60
    self.weight = weight
Chen Chen's avatar
Chen Chen committed
61
    self.example_id = example_id
62
63
64
65
66
67
68
69
70
71


class InputFeatures(object):
  """A single set of features of data."""

  def __init__(self,
               input_ids,
               input_mask,
               segment_ids,
               label_id,
Maxim Neumann's avatar
Maxim Neumann committed
72
               is_real_example=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
73
               weight=None,
Chen Chen's avatar
Chen Chen committed
74
               example_id=None):
75
76
77
78
79
    self.input_ids = input_ids
    self.input_mask = input_mask
    self.segment_ids = segment_ids
    self.label_id = label_id
    self.is_real_example = is_real_example
Maxim Neumann's avatar
Maxim Neumann committed
80
    self.weight = weight
Chen Chen's avatar
Chen Chen committed
81
    self.example_id = example_id
82
83
84


class DataProcessor(object):
85
  """Base class for converters for seq regression/classification datasets."""
86

87
88
  def __init__(self, process_text_fn=tokenization.convert_to_unicode):
    self.process_text_fn = process_text_fn
89
90
    self.is_regression = False
    self.label_type = None
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
  def get_train_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the train set."""
    raise NotImplementedError()

  def get_dev_examples(self, data_dir):
    """Gets a collection of `InputExample`s for the dev set."""
    raise NotImplementedError()

  def get_test_examples(self, data_dir):
    """Gets a collection of `InputExample`s for prediction."""
    raise NotImplementedError()

  def get_labels(self):
    """Gets the list of labels for this data set."""
    raise NotImplementedError()

  @staticmethod
  def get_processor_name():
    """Gets the string identifier of the processor."""
    raise NotImplementedError()

  @classmethod
  def _read_tsv(cls, input_file, quotechar=None):
    """Reads a tab separated value file."""
    with tf.io.gfile.GFile(input_file, "r") as f:
      reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
      lines = []
      for line in reader:
        lines.append(line)
      return lines

stephenwu's avatar
stephenwu committed
123
  @classmethod
stephenwu's avatar
stephenwu committed
124
  def _read_jsonl(cls, input_file):
stephenwu's avatar
stephenwu committed
125
    """Reads a json line file."""
126
    with tf.io.gfile.GFile(input_file, "r") as f:
stephenwu's avatar
stephenwu committed
127
128
129
130
131
      lines = []
      for json_str in f:
        lines.append(json.loads(json_str))
    return lines

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
  def featurize_example(self, *kargs, **kwargs):
    """Converts a single `InputExample` into a single `InputFeatures`."""
    return convert_single_example(*kargs, **kwargs)


class DefaultGLUEDataProcessor(DataProcessor):
  """Processor for the SuperGLUE dataset."""

  def get_train_examples(self, data_dir):
    """See base class."""
    return self._create_examples_tfds("train")

  def get_dev_examples(self, data_dir):
    """See base class."""
    return self._create_examples_tfds("validation")

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples_tfds("test")

  def _create_examples_tfds(self, set_type):
    """Creates examples for the training/dev/test sets."""
    raise NotImplementedError()

156

Vincent Etter's avatar
Vincent Etter committed
157
158
159
160
161
class AxProcessor(DataProcessor):
  """Processor for the AX dataset (GLUE diagnostics dataset)."""

  def get_train_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
162
163
164
    train_mnli_dataset = tfds.load(
        "glue/mnli", split="train", try_gcs=True).as_numpy_iterator()
    return self._create_examples_tfds(train_mnli_dataset, "train")
Vincent Etter's avatar
Vincent Etter committed
165
166
167

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
168
169
170
171
    val_mnli_dataset = tfds.load(
        "glue/mnli", split="validation_matched",
        try_gcs=True).as_numpy_iterator()
    return self._create_examples_tfds(val_mnli_dataset, "validation")
Vincent Etter's avatar
Vincent Etter committed
172
173
174

  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
175
176
177
    test_ax_dataset = tfds.load(
        "glue/ax", split="test", try_gcs=True).as_numpy_iterator()
    return self._create_examples_tfds(test_ax_dataset, "test")
Vincent Etter's avatar
Vincent Etter committed
178
179
180
181
182
183
184
185
186
187

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "AX"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
188
  def _create_examples_tfds(self, dataset, set_type):
Vincent Etter's avatar
Vincent Etter committed
189
    """Creates examples for the training/dev/test sets."""
Jiayu Ye's avatar
Jiayu Ye committed
190
191
    dataset = list(dataset)
    dataset.sort(key=lambda x: x["idx"])
Vincent Etter's avatar
Vincent Etter committed
192
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
193
194
195
196
197
198
199
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      label = "contradiction"
      text_a = self.process_text_fn(example["hypothesis"])
      text_b = self.process_text_fn(example["premise"])
      if set_type != "test":
        label = self.get_labels()[example["label"]]
Vincent Etter's avatar
Vincent Etter committed
200
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
201
202
203
          InputExample(
              guid=guid, text_a=text_a, text_b=text_b, label=label,
              weight=None))
Vincent Etter's avatar
Vincent Etter committed
204
205
206
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
207
class ColaProcessor(DefaultGLUEDataProcessor):
208
  """Processor for the CoLA data set (GLUE version)."""
209

210
211
212
213
214
215
216
217
218
  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "COLA"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
219
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
220
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
221
222
    dataset = tfds.load(
        "glue/cola", split=set_type, try_gcs=True).as_numpy_iterator()
Jiayu Ye's avatar
Jiayu Ye committed
223
224
    dataset = list(dataset)
    dataset.sort(key=lambda x: x["idx"])
225
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
226
    for i, example in enumerate(dataset):
227
      guid = "%s-%s" % (set_type, i)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
228
229
230
231
      label = "0"
      text_a = self.process_text_fn(example["sentence"])
      if set_type != "test":
        label = str(example["label"])
232
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
233
234
          InputExample(
              guid=guid, text_a=text_a, text_b=None, label=label, weight=None))
235
236
    return examples

237

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
class ImdbProcessor(DataProcessor):
  """Processor for the IMDb dataset."""

  def get_labels(self):
    return ["neg", "pos"]

  def get_train_examples(self, data_dir):
    return self._create_examples(os.path.join(data_dir, "train"))

  def get_dev_examples(self, data_dir):
    return self._create_examples(os.path.join(data_dir, "test"))

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "IMDB"

  def _create_examples(self, data_dir):
    """Creates examples."""
    examples = []
    for label in ["neg", "pos"]:
      cur_dir = os.path.join(data_dir, label)
      for filename in tf.io.gfile.listdir(cur_dir):
        if not filename.endswith("txt"):
          continue

        if len(examples) % 1000 == 0:
          logging.info("Loading dev example %d", len(examples))

        path = os.path.join(cur_dir, filename)
        with tf.io.gfile.GFile(path, "r") as f:
          text = f.read().strip().replace("<br />", " ")
        examples.append(
            InputExample(
                guid="unused_id", text_a=text, text_b=None, label=label))
    return examples


276
277
278
class MnliProcessor(DataProcessor):
  """Processor for the MultiNLI data set (GLUE version)."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
279
280
281
282
  def __init__(self,
               mnli_type="matched",
               process_text_fn=tokenization.convert_to_unicode):
    super(MnliProcessor, self).__init__(process_text_fn)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
283
    self.dataset = tfds.load("glue/mnli", try_gcs=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
284
285
286
287
    if mnli_type not in ("matched", "mismatched"):
      raise ValueError("Invalid `mnli_type`: %s" % mnli_type)
    self.mnli_type = mnli_type

288
289
  def get_train_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
290
    return self._create_examples_tfds("train")
291
292
293

  def get_dev_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
294
    if self.mnli_type == "matched":
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
295
      return self._create_examples_tfds("validation_matched")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
296
    else:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
297
      return self._create_examples_tfds("validation_mismatched")
298

Tianqi Liu's avatar
Tianqi Liu committed
299
300
  def get_test_examples(self, data_dir):
    """See base class."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
301
    if self.mnli_type == "matched":
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
302
      return self._create_examples_tfds("test_matched")
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
303
    else:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
304
      return self._create_examples_tfds("test_mismatched")
Tianqi Liu's avatar
Tianqi Liu committed
305

306
307
308
309
310
311
312
  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
313
    return "MNLI"
Tianqi Liu's avatar
Tianqi Liu committed
314

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
315
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
316
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
317
318
    dataset = tfds.load(
        "glue/mnli", split=set_type, try_gcs=True).as_numpy_iterator()
Jiayu Ye's avatar
Jiayu Ye committed
319
320
    dataset = list(dataset)
    dataset.sort(key=lambda x: x["idx"])
Tianqi Liu's avatar
Tianqi Liu committed
321
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
322
323
324
325
326
327
328
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      label = "contradiction"
      text_a = self.process_text_fn(example["hypothesis"])
      text_b = self.process_text_fn(example["premise"])
      if set_type != "test":
        label = self.get_labels()[example["label"]]
Tianqi Liu's avatar
Tianqi Liu committed
329
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
330
331
332
          InputExample(
              guid=guid, text_a=text_a, text_b=text_b, label=label,
              weight=None))
Tianqi Liu's avatar
Tianqi Liu committed
333
334
    return examples

335

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
336
class MrpcProcessor(DefaultGLUEDataProcessor):
337
338
  """Processor for the MRPC data set (GLUE version)."""

Tianqi Liu's avatar
Tianqi Liu committed
339
340
  def get_labels(self):
    """See base class."""
341
    return ["0", "1"]
Tianqi Liu's avatar
Tianqi Liu committed
342
343
344
345

  @staticmethod
  def get_processor_name():
    """See base class."""
346
347
    return "MRPC"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
348
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
349
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
350
351
    dataset = tfds.load(
        "glue/mrpc", split=set_type, try_gcs=True).as_numpy_iterator()
Jiayu Ye's avatar
Jiayu Ye committed
352
353
    dataset = list(dataset)
    dataset.sort(key=lambda x: x["idx"])
354
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
355
    for i, example in enumerate(dataset):
356
      guid = "%s-%s" % (set_type, i)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
357
358
359
360
361
      label = "0"
      text_a = self.process_text_fn(example["sentence1"])
      text_b = self.process_text_fn(example["sentence2"])
      if set_type != "test":
        label = str(example["label"])
362
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
363
364
365
          InputExample(
              guid=guid, text_a=text_a, text_b=text_b, label=label,
              weight=None))
366
    return examples
Tianqi Liu's avatar
Tianqi Liu committed
367
368
369
370
371
372


class PawsxProcessor(DataProcessor):
  """Processor for the PAWS-X data set."""
  supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]

Tianqi Liu's avatar
Tianqi Liu committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
  def __init__(self,
               language="en",
               process_text_fn=tokenization.convert_to_unicode):
    super(PawsxProcessor, self).__init__(process_text_fn)
    if language == "all":
      self.languages = PawsxProcessor.supported_languages
    elif language not in PawsxProcessor.supported_languages:
      raise ValueError("language %s is not supported for PAWS-X task." %
                       language)
    else:
      self.languages = [language]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = []
    for language in self.languages:
      if language == "en":
        train_tsv = "train.tsv"
      else:
        train_tsv = "translated_train.tsv"
      # Skips the header.
      lines.extend(
Tianqi Liu's avatar
Tianqi Liu committed
395
          self._read_tsv(os.path.join(data_dir, language, train_tsv))[1:])
Tianqi Liu's avatar
Tianqi Liu committed
396
397

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
398
    for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
399
400
401
402
403
404
405
406
407
408
409
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[1])
      text_b = self.process_text_fn(line[2])
      label = self.process_text_fn(line[3])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = []
Tianqi Liu's avatar
Tianqi Liu committed
410
    for lang in PawsxProcessor.supported_languages:
Tianqi Liu's avatar
Tianqi Liu committed
411
412
      lines.extend(
          self._read_tsv(os.path.join(data_dir, lang, "dev_2k.tsv"))[1:])
Tianqi Liu's avatar
Tianqi Liu committed
413
414

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
415
    for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
416
      guid = "dev-%d" % i
Tianqi Liu's avatar
Tianqi Liu committed
417
418
419
      text_a = self.process_text_fn(line[1])
      text_b = self.process_text_fn(line[2])
      label = self.process_text_fn(line[3])
Tianqi Liu's avatar
Tianqi Liu committed
420
421
422
423
424
425
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
Tianqi Liu's avatar
Tianqi Liu committed
426
427
    examples_by_lang = {k: [] for k in self.supported_languages}
    for lang in self.supported_languages:
Tianqi Liu's avatar
Tianqi Liu committed
428
      lines = self._read_tsv(os.path.join(data_dir, lang, "test_2k.tsv"))[1:]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
429
      for i, line in enumerate(lines):
Tianqi Liu's avatar
Tianqi Liu committed
430
        guid = "test-%d" % i
Tianqi Liu's avatar
Tianqi Liu committed
431
432
433
        text_a = self.process_text_fn(line[1])
        text_b = self.process_text_fn(line[2])
        label = self.process_text_fn(line[3])
Tianqi Liu's avatar
Tianqi Liu committed
434
        examples_by_lang[lang].append(
Tianqi Liu's avatar
Tianqi Liu committed
435
436
437
438
439
440
441
442
443
444
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
Tianqi Liu's avatar
Tianqi Liu committed
445
446
447
    return "XTREME-PAWS-X"


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
448
class QnliProcessor(DefaultGLUEDataProcessor):
449
  """Processor for the QNLI data set (GLUE version)."""
Saurabh Saxena's avatar
Saurabh Saxena committed
450
451
452

  def get_labels(self):
    """See base class."""
453
    return ["entailment", "not_entailment"]
Saurabh Saxena's avatar
Saurabh Saxena committed
454
455
456
457

  @staticmethod
  def get_processor_name():
    """See base class."""
458
    return "QNLI"
Saurabh Saxena's avatar
Saurabh Saxena committed
459

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
460
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
461
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
462
463
    dataset = tfds.load(
        "glue/qnli", split=set_type, try_gcs=True).as_numpy_iterator()
Jiayu Ye's avatar
Jiayu Ye committed
464
465
    dataset = list(dataset)
    dataset.sort(key=lambda x: x["idx"])
Saurabh Saxena's avatar
Saurabh Saxena committed
466
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
467
468
469
470
471
472
473
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      label = "entailment"
      text_a = self.process_text_fn(example["question"])
      text_b = self.process_text_fn(example["sentence"])
      if set_type != "test":
        label = self.get_labels()[example["label"]]
Tianqi Liu's avatar
Tianqi Liu committed
474
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
475
476
477
          InputExample(
              guid=guid, text_a=text_a, text_b=text_b, label=label,
              weight=None))
Saurabh Saxena's avatar
Saurabh Saxena committed
478
479
480
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
481
class QqpProcessor(DefaultGLUEDataProcessor):
482
  """Processor for the QQP data set (GLUE version)."""
483
484
485
486
487
488
489
490

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
491
    return "QQP"
492

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
493
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
494
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
495
496
    dataset = tfds.load(
        "glue/qqp", split=set_type, try_gcs=True).as_numpy_iterator()
Jiayu Ye's avatar
Jiayu Ye committed
497
498
    dataset = list(dataset)
    dataset.sort(key=lambda x: x["idx"])
499
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
500
501
502
503
504
505
506
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      label = "0"
      text_a = self.process_text_fn(example["question1"])
      text_b = self.process_text_fn(example["question2"])
      if set_type != "test":
        label = str(example["label"])
507
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
508
509
510
          InputExample(
              guid=guid, text_a=text_a, text_b=text_b, label=label,
              weight=None))
511
512
513
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
514
class RteProcessor(DefaultGLUEDataProcessor):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
515
516
517
518
519
520
521
522
523
524
525
526
527
  """Processor for the RTE data set (GLUE version)."""

  def get_labels(self):
    """See base class."""
    # All datasets are converted to 2-class split, where for 3-class datasets we
    # collapse neutral and contradiction into not_entailment.
    return ["entailment", "not_entailment"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "RTE"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
528
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
529
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
530
531
    dataset = tfds.load(
        "glue/rte", split=set_type, try_gcs=True).as_numpy_iterator()
Jiayu Ye's avatar
Jiayu Ye committed
532
533
    dataset = list(dataset)
    dataset.sort(key=lambda x: x["idx"])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
534
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
535
    for i, example in enumerate(dataset):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
536
      guid = "%s-%s" % (set_type, i)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
537
538
539
540
541
      label = "entailment"
      text_a = self.process_text_fn(example["sentence1"])
      text_b = self.process_text_fn(example["sentence2"])
      if set_type != "test":
        label = self.get_labels()[example["label"]]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
542
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
543
544
545
          InputExample(
              guid=guid, text_a=text_a, text_b=text_b, label=label,
              weight=None))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
546
547
548
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
549
class SstProcessor(DefaultGLUEDataProcessor):
550
551
552
553
554
555
556
557
558
559
560
  """Processor for the SST-2 data set (GLUE version)."""

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "SST-2"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
561
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
562
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
563
564
    dataset = tfds.load(
        "glue/sst2", split=set_type, try_gcs=True).as_numpy_iterator()
Jiayu Ye's avatar
Jiayu Ye committed
565
566
    dataset = list(dataset)
    dataset.sort(key=lambda x: x["idx"])
567
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
568
    for i, example in enumerate(dataset):
569
      guid = "%s-%s" % (set_type, i)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
570
571
572
573
      label = "0"
      text_a = self.process_text_fn(example["sentence"])
      if set_type != "test":
        label = str(example["label"])
574
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
575
576
          InputExample(
              guid=guid, text_a=text_a, text_b=None, label=label, weight=None))
577
578
579
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
580
class StsBProcessor(DefaultGLUEDataProcessor):
581
582
583
584
585
586
587
  """Processor for the STS-B data set (GLUE version)."""

  def __init__(self, process_text_fn=tokenization.convert_to_unicode):
    super(StsBProcessor, self).__init__(process_text_fn=process_text_fn)
    self.is_regression = True
    self.label_type = float
    self._labels = None
588

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
589
590
591
592
  def _create_examples_tfds(self, set_type):
    """Creates examples for the training/dev/test sets."""
    dataset = tfds.load(
        "glue/stsb", split=set_type, try_gcs=True).as_numpy_iterator()
Jiayu Ye's avatar
Jiayu Ye committed
593
594
    dataset = list(dataset)
    dataset.sort(key=lambda x: x["idx"])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
595
596
597
598
599
600
601
602
603
604
605
606
607
    examples = []
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      label = 0.0
      text_a = self.process_text_fn(example["sentence1"])
      text_b = self.process_text_fn(example["sentence2"])
      if set_type != "test":
        label = self.label_type(example["label"])
      examples.append(
          InputExample(
              guid=guid, text_a=text_a, text_b=text_b, label=label,
              weight=None))
    return examples
608
609
610

  def get_labels(self):
    """See base class."""
611
    return self._labels
612
613
614
615

  @staticmethod
  def get_processor_name():
    """See base class."""
616
    return "STS-B"
617
618


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
619
class TfdsProcessor(DataProcessor):
Maxim Neumann's avatar
Maxim Neumann committed
620
  """Processor for generic text classification and regression TFDS data set.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
621
622
623
624
625
626
627
628
629
630

  The TFDS parameters are expected to be provided in the tfds_params string, in
  a comma-separated list of parameter assignments.
  Examples:
    tfds_params="dataset=scicite,text_key=string"
    tfds_params="dataset=imdb_reviews,test_split=,dev_split=test"
    tfds_params="dataset=glue/cola,text_key=sentence"
    tfds_params="dataset=glue/sst2,text_key=sentence"
    tfds_params="dataset=glue/qnli,text_key=question,text_b_key=sentence"
    tfds_params="dataset=glue/mrpc,text_key=sentence1,text_b_key=sentence2"
Maxim Neumann's avatar
Maxim Neumann committed
631
632
    tfds_params="dataset=glue/stsb,text_key=sentence1,text_b_key=sentence2,"
                "is_regression=true,label_type=float"
Maxim Neumann's avatar
Maxim Neumann committed
633
634
    tfds_params="dataset=snli,text_key=premise,text_b_key=hypothesis,"
                "skip_label=-1"
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
635
636
637
638
  Possible parameters (please refer to the documentation of Tensorflow Datasets
  (TFDS) for the meaning of individual parameters):
    dataset: Required dataset name (potentially with subset and version number).
    data_dir: Optional TFDS source root directory.
639
    module_import: Optional Dataset module to import.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
640
641
642
643
644
645
646
647
648
    train_split: Name of the train split (defaults to `train`).
    dev_split: Name of the dev split (defaults to `validation`).
    test_split: Name of the test split (defaults to `test`).
    text_key: Key of the text_a feature (defaults to `text`).
    text_b_key: Key of the second text feature if available.
    label_key: Key of the label feature (defaults to `label`).
    test_text_key: Key of the text feature to use in test set.
    test_text_b_key: Key of the second text feature to use in test set.
    test_label: String to be used as the label for all test examples.
Maxim Neumann's avatar
Maxim Neumann committed
649
    label_type: Type of the label key (defaults to `int`).
Maxim Neumann's avatar
Maxim Neumann committed
650
    weight_key: Key of the float sample weight (is not used if not provided).
Maxim Neumann's avatar
Maxim Neumann committed
651
    is_regression: Whether the task is a regression problem (defaults to False).
Maxim Neumann's avatar
Maxim Neumann committed
652
    skip_label: Skip examples with given label (defaults to None).
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
653
654
  """

Tianqi Liu's avatar
Tianqi Liu committed
655
656
  def __init__(self,
               tfds_params,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
657
658
659
               process_text_fn=tokenization.convert_to_unicode):
    super(TfdsProcessor, self).__init__(process_text_fn)
    self._process_tfds_params_str(tfds_params)
660
661
662
    if self.module_import:
      importlib.import_module(self.module_import)

Tianqi Liu's avatar
Tianqi Liu committed
663
664
    self.dataset, info = tfds.load(
        self.dataset_name, data_dir=self.data_dir, with_info=True)
Maxim Neumann's avatar
Maxim Neumann committed
665
666
667
668
    if self.is_regression:
      self._labels = None
    else:
      self._labels = list(range(info.features[self.label_key].num_classes))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
669
670
671

  def _process_tfds_params_str(self, params_str):
    """Extracts TFDS parameters from a comma-separated assignements string."""
Maxim Neumann's avatar
Maxim Neumann committed
672
673
674
    dtype_map = {"int": int, "float": float}
    cast_str_to_bool = lambda s: s.lower() not in ["false", "0"]

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
675
676
677
678
    tuples = [x.split("=") for x in params_str.split(",")]
    d = {k.strip(): v.strip() for k, v in tuples}
    self.dataset_name = d["dataset"]  # Required.
    self.data_dir = d.get("data_dir", None)
679
    self.module_import = d.get("module_import", None)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
680
681
682
683
684
685
686
687
688
    self.train_split = d.get("train_split", "train")
    self.dev_split = d.get("dev_split", "validation")
    self.test_split = d.get("test_split", "test")
    self.text_key = d.get("text_key", "text")
    self.text_b_key = d.get("text_b_key", None)
    self.label_key = d.get("label_key", "label")
    self.test_text_key = d.get("test_text_key", self.text_key)
    self.test_text_b_key = d.get("test_text_b_key", self.text_b_key)
    self.test_label = d.get("test_label", "test_example")
Maxim Neumann's avatar
Maxim Neumann committed
689
690
    self.label_type = dtype_map[d.get("label_type", "int")]
    self.is_regression = cast_str_to_bool(d.get("is_regression", "False"))
Maxim Neumann's avatar
Maxim Neumann committed
691
    self.weight_key = d.get("weight_key", None)
Maxim Neumann's avatar
Maxim Neumann committed
692
693
694
    self.skip_label = d.get("skip_label", None)
    if self.skip_label is not None:
      self.skip_label = self.label_type(self.skip_label)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

  def get_train_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.train_split, "train")

  def get_dev_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.dev_split, "dev")

  def get_test_examples(self, data_dir):
    assert data_dir is None
    return self._create_examples(self.test_split, "test")

  def get_labels(self):
    return self._labels

  def get_processor_name(self):
    return "TFDS_" + self.dataset_name

  def _create_examples(self, split_name, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
715
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
716
717
718
719
    if split_name not in self.dataset:
      raise ValueError("Split {} not available.".format(split_name))
    dataset = self.dataset[split_name].as_numpy_iterator()
    examples = []
Maxim Neumann's avatar
Maxim Neumann committed
720
    text_b, weight = None, None
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
721
722
723
724
725
726
727
728
729
730
731
    for i, example in enumerate(dataset):
      guid = "%s-%s" % (set_type, i)
      if set_type == "test":
        text_a = self.process_text_fn(example[self.test_text_key])
        if self.test_text_b_key:
          text_b = self.process_text_fn(example[self.test_text_b_key])
        label = self.test_label
      else:
        text_a = self.process_text_fn(example[self.text_key])
        if self.text_b_key:
          text_b = self.process_text_fn(example[self.text_b_key])
Maxim Neumann's avatar
Maxim Neumann committed
732
        label = self.label_type(example[self.label_key])
Maxim Neumann's avatar
Maxim Neumann committed
733
734
        if self.skip_label is not None and label == self.skip_label:
          continue
Maxim Neumann's avatar
Maxim Neumann committed
735
736
      if self.weight_key:
        weight = float(example[self.weight_key])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
737
      examples.append(
Tianqi Liu's avatar
Tianqi Liu committed
738
739
740
741
742
743
          InputExample(
              guid=guid,
              text_a=text_a,
              text_b=text_b,
              label=label,
              weight=weight))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
744
745
746
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
747
class WnliProcessor(DefaultGLUEDataProcessor):
748
749
750
751
752
753
754
755
756
757
758
  """Processor for the WNLI data set (GLUE version)."""

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "WNLI"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
759
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
760
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
761
762
    dataset = tfds.load(
        "glue/wnli", split=set_type, try_gcs=True).as_numpy_iterator()
Jiayu Ye's avatar
Jiayu Ye committed
763
764
    dataset = list(dataset)
    dataset.sort(key=lambda x: x["idx"])
765
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
766
    for i, example in enumerate(dataset):
767
      guid = "%s-%s" % (set_type, i)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
768
769
770
771
772
      label = "0"
      text_a = self.process_text_fn(example["sentence1"])
      text_b = self.process_text_fn(example["sentence2"])
      if set_type != "test":
        label = str(example["label"])
773
      examples.append(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
774
775
776
          InputExample(
              guid=guid, text_a=text_a, text_b=text_b, label=label,
              weight=None))
777
778
779
    return examples


780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
class XnliProcessor(DataProcessor):
  """Processor for the XNLI data set."""
  supported_languages = [
      "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
      "ur", "vi", "zh"
  ]

  def __init__(self,
               language="en",
               process_text_fn=tokenization.convert_to_unicode):
    super(XnliProcessor, self).__init__(process_text_fn)
    if language == "all":
      self.languages = XnliProcessor.supported_languages
    elif language not in XnliProcessor.supported_languages:
      raise ValueError("language %s is not supported for XNLI task." % language)
    else:
      self.languages = [language]

  def get_train_examples(self, data_dir):
    """See base class."""
    lines = []
    for language in self.languages:
      # Skips the header.
      lines.extend(
          self._read_tsv(
              os.path.join(data_dir, "multinli",
                           "multinli.train.%s.tsv" % language))[1:])

    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
809
    for i, line in enumerate(lines):
810
811
812
813
814
815
816
817
818
819
820
821
822
823
      guid = "train-%d" % i
      text_a = self.process_text_fn(line[0])
      text_b = self.process_text_fn(line[1])
      label = self.process_text_fn(line[2])
      if label == self.process_text_fn("contradictory"):
        label = self.process_text_fn("contradiction")
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv"))
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
824
    for i, line in enumerate(lines):
825
826
827
828
829
830
831
832
833
834
835
836
837
838
      if i == 0:
        continue
      guid = "dev-%d" % i
      text_a = self.process_text_fn(line[6])
      text_b = self.process_text_fn(line[7])
      label = self.process_text_fn(line[1])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "xnli.test.tsv"))
    examples_by_lang = {k: [] for k in XnliProcessor.supported_languages}
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
839
    for i, line in enumerate(lines):
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
      if i == 0:
        continue
      guid = "test-%d" % i
      language = self.process_text_fn(line[0])
      text_a = self.process_text_fn(line[6])
      text_b = self.process_text_fn(line[7])
      label = self.process_text_fn(line[1])
      examples_by_lang[language].append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XNLI"


class XtremePawsxProcessor(DataProcessor):
  """Processor for the XTREME PAWS-X data set."""
  supported_languages = ["de", "en", "es", "fr", "ja", "ko", "zh"]

865
866
867
868
869
870
  def __init__(self,
               process_text_fn=tokenization.convert_to_unicode,
               translated_data_dir=None,
               only_use_en_dev=True):
    """See base class.

871
    Args:
872
873
874
875
876
877
878
879
880
881
      process_text_fn: See base class.
      translated_data_dir: If specified, will also include translated data in
        the training and testing data.
      only_use_en_dev: If True, only use english dev data. Otherwise, use dev
        data from all languages.
    """
    super(XtremePawsxProcessor, self).__init__(process_text_fn)
    self.translated_data_dir = translated_data_dir
    self.only_use_en_dev = only_use_en_dev

882
883
884
  def get_train_examples(self, data_dir):
    """See base class."""
    examples = []
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
    if self.translated_data_dir is None:
      lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))
      for i, line in enumerate(lines):
        guid = "train-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = self.process_text_fn(line[2])
        examples.append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    else:
      for lang in self.supported_languages:
        lines = self._read_tsv(
            os.path.join(self.translated_data_dir, "translate-train",
                         f"en-{lang}-translated.tsv"))
        for i, line in enumerate(lines):
          guid = f"train-{lang}-{i}"
          text_a = self.process_text_fn(line[2])
          text_b = self.process_text_fn(line[3])
          label = self.process_text_fn(line[4])
          examples.append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
907
908
909
910
911
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    examples = []
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
    if self.only_use_en_dev:
      lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
      for i, line in enumerate(lines):
        guid = "dev-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = self.process_text_fn(line[2])
        examples.append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    else:
      for lang in self.supported_languages:
        lines = self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv"))
        for i, line in enumerate(lines):
          guid = f"dev-{lang}-{i}"
          text_a = self.process_text_fn(line[0])
          text_b = self.process_text_fn(line[1])
          label = self.process_text_fn(line[2])
          examples.append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
932
933
934
935
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
936
    examples_by_lang = {}
937
    for lang in self.supported_languages:
938
      examples_by_lang[lang] = []
939
      lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
940
      for i, line in enumerate(lines):
941
        guid = f"test-{lang}-{i}"
942
943
944
945
946
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = "0"
        examples_by_lang[lang].append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
    if self.translated_data_dir is not None:
      for lang in self.supported_languages:
        if lang == "en":
          continue
        examples_by_lang[f"{lang}-en"] = []
        lines = self._read_tsv(
            os.path.join(self.translated_data_dir, "translate-test",
                         f"test-{lang}-en-translated.tsv"))
        for i, line in enumerate(lines):
          guid = f"test-{lang}-en-{i}"
          text_a = self.process_text_fn(line[2])
          text_b = self.process_text_fn(line[3])
          label = "0"
          examples_by_lang[f"{lang}-en"].append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XTREME-PAWS-X"


class XtremeXnliProcessor(DataProcessor):
  """Processor for the XTREME XNLI data set."""
  supported_languages = [
      "ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr",
      "ur", "vi", "zh"
  ]

982
983
984
985
986
987
  def __init__(self,
               process_text_fn=tokenization.convert_to_unicode,
               translated_data_dir=None,
               only_use_en_dev=True):
    """See base class.

988
    Args:
989
990
991
992
993
994
995
996
997
998
      process_text_fn: See base class.
      translated_data_dir: If specified, will also include translated data in
        the training data.
      only_use_en_dev: If True, only use english dev data. Otherwise, use dev
        data from all languages.
    """
    super(XtremeXnliProcessor, self).__init__(process_text_fn)
    self.translated_data_dir = translated_data_dir
    self.only_use_en_dev = only_use_en_dev

999
1000
1001
1002
1003
  def get_train_examples(self, data_dir):
    """See base class."""
    lines = self._read_tsv(os.path.join(data_dir, "train-en.tsv"))

    examples = []
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
    if self.translated_data_dir is None:
      for i, line in enumerate(lines):
        guid = "train-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = self.process_text_fn(line[2])
        if label == self.process_text_fn("contradictory"):
          label = self.process_text_fn("contradiction")
        examples.append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    else:
      for lang in self.supported_languages:
        lines = self._read_tsv(
            os.path.join(self.translated_data_dir, "translate-train",
                         f"en-{lang}-translated.tsv"))
        for i, line in enumerate(lines):
          guid = f"train-{lang}-{i}"
          text_a = self.process_text_fn(line[2])
          text_b = self.process_text_fn(line[3])
          label = self.process_text_fn(line[4])
          if label == self.process_text_fn("contradictory"):
            label = self.process_text_fn("contradiction")
          examples.append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
1029
1030
1031
1032
1033
    return examples

  def get_dev_examples(self, data_dir):
    """See base class."""
    examples = []
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
    if self.only_use_en_dev:
      lines = self._read_tsv(os.path.join(data_dir, "dev-en.tsv"))
      for i, line in enumerate(lines):
        guid = "dev-%d" % i
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = self.process_text_fn(line[2])
        examples.append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    else:
      for lang in self.supported_languages:
        lines = self._read_tsv(os.path.join(data_dir, f"dev-{lang}.tsv"))
        for i, line in enumerate(lines):
          guid = f"dev-{lang}-{i}"
          text_a = self.process_text_fn(line[0])
          text_b = self.process_text_fn(line[1])
          label = self.process_text_fn(line[2])
          if label == self.process_text_fn("contradictory"):
            label = self.process_text_fn("contradiction")
          examples.append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
1056
1057
1058
1059
    return examples

  def get_test_examples(self, data_dir):
    """See base class."""
1060
    examples_by_lang = {}
1061
    for lang in self.supported_languages:
1062
      examples_by_lang[lang] = []
1063
      lines = self._read_tsv(os.path.join(data_dir, f"test-{lang}.tsv"))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1064
      for i, line in enumerate(lines):
1065
        guid = f"test-{lang}-{i}"
1066
1067
1068
1069
1070
        text_a = self.process_text_fn(line[0])
        text_b = self.process_text_fn(line[1])
        label = "contradiction"
        examples_by_lang[lang].append(
            InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
    if self.translated_data_dir is not None:
      for lang in self.supported_languages:
        if lang == "en":
          continue
        examples_by_lang[f"{lang}-en"] = []
        lines = self._read_tsv(
            os.path.join(self.translated_data_dir, "translate-test",
                         f"test-{lang}-en-translated.tsv"))
        for i, line in enumerate(lines):
          guid = f"test-{lang}-en-{i}"
          text_a = self.process_text_fn(line[2])
          text_b = self.process_text_fn(line[3])
          label = "contradiction"
          examples_by_lang[f"{lang}-en"].append(
              InputExample(
                  guid=guid, text_a=text_a, text_b=text_b, label=label))
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
    return examples_by_lang

  def get_labels(self):
    """See base class."""
    return ["contradiction", "entailment", "neutral"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "XTREME-XNLI"


1099
1100
1101
1102
def convert_single_example(ex_index, example, label_list, max_seq_length,
                           tokenizer):
  """Converts a single `InputExample` into a single `InputFeatures`."""
  label_map = {}
Maxim Neumann's avatar
Maxim Neumann committed
1103
1104
1105
  if label_list:
    for (i, label) in enumerate(label_list):
      label_map[label] = i
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121

  tokens_a = tokenizer.tokenize(example.text_a)
  tokens_b = None
  if example.text_b:
    tokens_b = tokenizer.tokenize(example.text_b)

  if tokens_b:
    # Modifies `tokens_a` and `tokens_b` in place so that the total
    # length is less than the specified length.
    # Account for [CLS], [SEP], [SEP] with "- 3"
    _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
  else:
    # Account for [CLS] and [SEP] with "- 2"
    if len(tokens_a) > max_seq_length - 2:
      tokens_a = tokens_a[0:(max_seq_length - 2)]

1122
1123
1124
1125
1126
  seg_id_a = 0
  seg_id_b = 1
  seg_id_cls = 0
  seg_id_pad = 0

1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
  # The convention in BERT is:
  # (a) For sequence pairs:
  #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
  #  type_ids: 0     0  0    0    0     0       0 0     1  1  1  1   1 1
  # (b) For single sequences:
  #  tokens:   [CLS] the dog is hairy . [SEP]
  #  type_ids: 0     0   0   0  0     0 0
  #
  # Where "type_ids" are used to indicate whether this is the first
  # sequence or the second sequence. The embedding vectors for `type=0` and
  # `type=1` were learned during pre-training and are added to the wordpiece
  # embedding vector (and position vector). This is not *strictly* necessary
  # since the [SEP] token unambiguously separates the sequences, but it makes
  # it easier for the model to learn the concept of sequences.
  #
  # For classification tasks, the first vector (corresponding to [CLS]) is
  # used as the "sentence vector". Note that this only makes sense because
  # the entire model is fine-tuned.
  tokens = []
  segment_ids = []
  tokens.append("[CLS]")
1148
  segment_ids.append(seg_id_cls)
1149
1150
  for token in tokens_a:
    tokens.append(token)
1151
    segment_ids.append(seg_id_a)
1152
  tokens.append("[SEP]")
1153
  segment_ids.append(seg_id_a)
1154
1155
1156
1157

  if tokens_b:
    for token in tokens_b:
      tokens.append(token)
1158
      segment_ids.append(seg_id_b)
1159
    tokens.append("[SEP]")
1160
    segment_ids.append(seg_id_b)
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171

  input_ids = tokenizer.convert_tokens_to_ids(tokens)

  # The mask has 1 for real tokens and 0 for padding tokens. Only real
  # tokens are attended to.
  input_mask = [1] * len(input_ids)

  # Zero-pad up to the sequence length.
  while len(input_ids) < max_seq_length:
    input_ids.append(0)
    input_mask.append(0)
1172
    segment_ids.append(seg_id_pad)
1173
1174
1175
1176
1177

  assert len(input_ids) == max_seq_length
  assert len(input_mask) == max_seq_length
  assert len(segment_ids) == max_seq_length

Maxim Neumann's avatar
Maxim Neumann committed
1178
  label_id = label_map[example.label] if label_map else example.label
1179
1180
  if ex_index < 5:
    logging.info("*** Example ***")
1181
1182
1183
1184
1185
1186
    logging.info("guid: %s", (example.guid))
    logging.info("tokens: %s",
                 " ".join([tokenization.printable_text(x) for x in tokens]))
    logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
    logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
    logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1187
    logging.info("label: %s (id = %s)", example.label, str(label_id))
Maxim Neumann's avatar
Maxim Neumann committed
1188
    logging.info("weight: %s", example.weight)
Chen Chen's avatar
Chen Chen committed
1189
    logging.info("example_id: %s", example.example_id)
1190
1191
1192
1193
1194
1195

  feature = InputFeatures(
      input_ids=input_ids,
      input_mask=input_mask,
      segment_ids=segment_ids,
      label_id=label_id,
Maxim Neumann's avatar
Maxim Neumann committed
1196
      is_real_example=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1197
      weight=example.weight,
Chen Chen's avatar
Chen Chen committed
1198
      example_id=example.example_id)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1199

1200
1201
1202
  return feature


stephenwu's avatar
stephenwu committed
1203
class AXgProcessor(DataProcessor):
stephenwu's avatar
stephenwu committed
1204
  """Processor for the AXg dataset (SuperGLUE diagnostics dataset)."""
stephenwu's avatar
stephenwu committed
1205
1206
1207
1208

  def get_test_examples(self, data_dir):
    """See base class."""
    return self._create_examples(
stephenwu's avatar
stephenwu committed
1209
        self._read_jsonl(os.path.join(data_dir, "AX-g.jsonl")), "test")
stephenwu's avatar
stephenwu committed
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

  def get_labels(self):
    """See base class."""
    return ["entailment", "not_entailment"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "AXg"

  def _create_examples(self, lines, set_type):
    """Creates examples for the training/dev/test sets."""
    examples = []
    for line in lines:
1224
      guid = "%s-%s" % (set_type, self.process_text_fn(str(line["idx"])))
stephenwu's avatar
stephenwu committed
1225
1226
      text_a = self.process_text_fn(line["premise"])
      text_b = self.process_text_fn(line["hypothesis"])
stephenwu's avatar
stephenwu committed
1227
1228
1229
1230
      label = self.process_text_fn(line["label"])
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples
1231

1232

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1233
class BoolQProcessor(DefaultGLUEDataProcessor):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1234
1235
  """Processor for the BoolQ dataset (SuperGLUE diagnostics dataset)."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1236
1237
1238
1239
1240
1241
1242
1243
1244
  def get_labels(self):
    """See base class."""
    return ["True", "False"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "BoolQ"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1245
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1246
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1247
1248
    dataset = tfds.load(
        "super_glue/boolq", split=set_type, try_gcs=True).as_numpy_iterator()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1249
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1250
1251
1252
1253
1254
1255
1256
    for example in dataset:
      guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
      text_a = self.process_text_fn(example["question"])
      text_b = self.process_text_fn(example["passage"])
      label = "False"
      if set_type != "test":
        label = self.get_labels()[example["label"]]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1257
1258
1259
1260
1261
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1262
class CBProcessor(DefaultGLUEDataProcessor):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
  """Processor for the CB dataset (SuperGLUE diagnostics dataset)."""

  def get_labels(self):
    """See base class."""
    return ["entailment", "neutral", "contradiction"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "CB"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1274
  def _create_examples_tfds(self, set_type):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1275
    """Creates examples for the training/dev/test sets."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1276
1277
    dataset = tfds.load(
        "super_glue/cb", split=set_type, try_gcs=True).as_numpy_iterator()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1278
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1279
1280
1281
1282
1283
1284
1285
    for example in dataset:
      guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
      text_a = self.process_text_fn(example["premise"])
      text_b = self.process_text_fn(example["hypothesis"])
      label = "entailment"
      if set_type != "test":
        label = self.get_labels()[example["label"]]
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1286
1287
1288
1289
1290
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1291
class SuperGLUERTEProcessor(DefaultGLUEDataProcessor):
stephenwu's avatar
stephenwu committed
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
  """Processor for the RTE dataset (SuperGLUE version)."""

  def get_labels(self):
    """See base class."""
    # All datasets are converted to 2-class split, where for 3-class datasets we
    # collapse neutral and contradiction into not_entailment.
    return ["entailment", "not_entailment"]

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "RTESuperGLUE"

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1305
  def _create_examples_tfds(self, set_type):
stephenwu's avatar
stephenwu committed
1306
1307
    """Creates examples for the training/dev/test sets."""
    examples = []
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1308
1309
1310
1311
1312
1313
1314
1315
1316
    dataset = tfds.load(
        "super_glue/rte", split=set_type, try_gcs=True).as_numpy_iterator()
    for example in dataset:
      guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
      text_a = self.process_text_fn(example["premise"])
      text_b = self.process_text_fn(example["hypothesis"])
      label = "entailment"
      if set_type != "test":
        label = self.get_labels()[example["label"]]
stephenwu's avatar
stephenwu committed
1317
1318
1319
      examples.append(
          InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
    return examples
stephenwu's avatar
stephenwu committed
1320

1321

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
class WiCInputExample(InputExample):
  """Processor for the WiC dataset (SuperGLUE version)."""

  def __init__(self,
               guid,
               text_a,
               text_b=None,
               label=None,
               word=None,
               weight=None,
               example_id=None):
    """A single training/test example for simple seq regression/classification."""
    super(WiCInputExample, self).__init__(guid, text_a, text_b, label, weight,
                                          example_id)
    self.word = word


class WiCProcessor(DefaultGLUEDataProcessor):
  """Processor for the RTE dataset (SuperGLUE version)."""

  def get_labels(self):
    """Not used."""
    return []

  @staticmethod
  def get_processor_name():
    """See base class."""
    return "RTESuperGLUE"

  def _create_examples_tfds(self, set_type):
    """Creates examples for the training/dev/test sets."""
    examples = []
    dataset = tfds.load(
        "super_glue/wic", split=set_type, try_gcs=True).as_numpy_iterator()
    for example in dataset:
      guid = "%s-%s" % (set_type, self.process_text_fn(str(example["idx"])))
      text_a = self.process_text_fn(example["sentence1"])
      text_b = self.process_text_fn(example["sentence2"])
      word = self.process_text_fn(example["word"])
      label = 0
      if set_type != "test":
        label = example["label"]
      examples.append(
          WiCInputExample(
              guid=guid, text_a=text_a, text_b=text_b, word=word, label=label))
    return examples

  def featurize_example(self, ex_index, example, label_list, max_seq_length,
                        tokenizer):
    """Here we concate sentence1, sentence2, word together with [SEP] tokens."""
    del label_list
    tokens_a = tokenizer.tokenize(example.text_a)
    tokens_b = tokenizer.tokenize(example.text_b)
    tokens_word = tokenizer.tokenize(example.word)

    # Modifies `tokens_a` and `tokens_b` in place so that the total
    # length is less than the specified length.
    # Account for [CLS], [SEP], [SEP], [SEP] with "- 4"
    # Here we only pop out the first two sentence tokens.
    _truncate_seq_pair(tokens_a, tokens_b,
                       max_seq_length - 4 - len(tokens_word))

    seg_id_a = 0
    seg_id_b = 1
    seg_id_c = 2
    seg_id_cls = 0
    seg_id_pad = 0

    tokens = []
    segment_ids = []
    tokens.append("[CLS]")
    segment_ids.append(seg_id_cls)
    for token in tokens_a:
      tokens.append(token)
      segment_ids.append(seg_id_a)
    tokens.append("[SEP]")
    segment_ids.append(seg_id_a)

    for token in tokens_b:
      tokens.append(token)
      segment_ids.append(seg_id_b)

    tokens.append("[SEP]")
    segment_ids.append(seg_id_b)

    for token in tokens_word:
      tokens.append(token)
      segment_ids.append(seg_id_c)

    tokens.append("[SEP]")
    segment_ids.append(seg_id_c)

    input_ids = tokenizer.convert_tokens_to_ids(tokens)

    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    input_mask = [1] * len(input_ids)

    # Zero-pad up to the sequence length.
    while len(input_ids) < max_seq_length:
      input_ids.append(0)
      input_mask.append(0)
      segment_ids.append(seg_id_pad)

    assert len(input_ids) == max_seq_length
    assert len(input_mask) == max_seq_length
    assert len(segment_ids) == max_seq_length

    label_id = example.label
    if ex_index < 5:
      logging.info("*** Example ***")
      logging.info("guid: %s", (example.guid))
      logging.info("tokens: %s",
                   " ".join([tokenization.printable_text(x) for x in tokens]))
      logging.info("input_ids: %s", " ".join([str(x) for x in input_ids]))
      logging.info("input_mask: %s", " ".join([str(x) for x in input_mask]))
      logging.info("segment_ids: %s", " ".join([str(x) for x in segment_ids]))
      logging.info("label: %s (id = %s)", example.label, str(label_id))
      logging.info("weight: %s", example.weight)
      logging.info("example_id: %s", example.example_id)

    feature = InputFeatures(
        input_ids=input_ids,
        input_mask=input_mask,
        segment_ids=segment_ids,
        label_id=label_id,
        is_real_example=True,
        weight=example.weight,
        example_id=example.example_id)

    return feature


Tianqi Liu's avatar
Tianqi Liu committed
1455
1456
1457
1458
1459
def file_based_convert_examples_to_features(examples,
                                            label_list,
                                            max_seq_length,
                                            tokenizer,
                                            output_file,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1460
1461
                                            label_type=None,
                                            featurize_fn=None):
1462
1463
  """Convert a set of `InputExample`s to a TFRecord file."""

1464
  tf.io.gfile.makedirs(os.path.dirname(output_file))
1465
1466
  writer = tf.io.TFRecordWriter(output_file)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1467
  for ex_index, example in enumerate(examples):
1468
    if ex_index % 10000 == 0:
1469
      logging.info("Writing example %d of %d", ex_index, len(examples))
1470

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1471
1472
1473
1474
1475
1476
    if featurize_fn:
      feature = featurize_fn(ex_index, example, label_list, max_seq_length,
                             tokenizer)
    else:
      feature = convert_single_example(ex_index, example, label_list,
                                       max_seq_length, tokenizer)
1477
1478
1479
1480

    def create_int_feature(values):
      f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
      return f
Tianqi Liu's avatar
Tianqi Liu committed
1481

Maxim Neumann's avatar
Maxim Neumann committed
1482
1483
1484
    def create_float_feature(values):
      f = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
      return f
1485
1486
1487
1488
1489

    features = collections.OrderedDict()
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)
Maxim Neumann's avatar
Maxim Neumann committed
1490
1491
    if label_type is not None and label_type == float:
      features["label_ids"] = create_float_feature([feature.label_id])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1492
    elif feature.label_id is not None:
Maxim Neumann's avatar
Maxim Neumann committed
1493
      features["label_ids"] = create_int_feature([feature.label_id])
1494
1495
    features["is_real_example"] = create_int_feature(
        [int(feature.is_real_example)])
Maxim Neumann's avatar
Maxim Neumann committed
1496
1497
    if feature.weight is not None:
      features["weight"] = create_float_feature([feature.weight])
Chen Chen's avatar
Chen Chen committed
1498
1499
1500
1501
    if feature.example_id is not None:
      features["example_id"] = create_int_feature([feature.example_id])
    else:
      features["example_id"] = create_int_feature([ex_index])
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString())
  writer.close()


def _truncate_seq_pair(tokens_a, tokens_b, max_length):
  """Truncates a sequence pair in place to the maximum length."""

  # This is a simple heuristic which will always truncate the longer sequence
  # one token at a time. This makes more sense than truncating an equal percent
  # of tokens from each, since if one sequence is very short then each token
  # that's truncated likely contains more information than a longer sequence.
  while True:
    total_length = len(tokens_a) + len(tokens_b)
    if total_length <= max_length:
      break
    if len(tokens_a) > len(tokens_b):
      tokens_a.pop()
    else:
      tokens_b.pop()


def generate_tf_record_from_data_file(processor,
                                      data_dir,
1527
                                      tokenizer,
1528
1529
                                      train_data_output_path=None,
                                      eval_data_output_path=None,
Tianqi Liu's avatar
Tianqi Liu committed
1530
                                      test_data_output_path=None,
1531
                                      max_seq_length=128):
1532
1533
  """Generates and saves training data into a tf record file.

1534
  Args:
1535
1536
      processor: Input processor object to be used for generating data. Subclass
        of `DataProcessor`.
1537
      data_dir: Directory that contains train/eval/test data to process.
1538
      tokenizer: The tokenizer to be applied on the data.
1539
1540
1541
1542
      train_data_output_path: Output to which processed tf record for training
        will be saved.
      eval_data_output_path: Output to which processed tf record for evaluation
        will be saved.
Tianqi Liu's avatar
Tianqi Liu committed
1543
      test_data_output_path: Output to which processed tf record for testing
Tianqi Liu's avatar
Tianqi Liu committed
1544
1545
        will be saved. Must be a pattern template with {} if processor has
        language specific test data.
1546
1547
1548
1549
1550
1551
1552
1553
1554
      max_seq_length: Maximum sequence length of the to be generated
        training/eval data.

  Returns:
      A dictionary containing input meta data.
  """
  assert train_data_output_path or eval_data_output_path

  label_list = processor.get_labels()
Maxim Neumann's avatar
Maxim Neumann committed
1555
1556
  label_type = getattr(processor, "label_type", None)
  is_regression = getattr(processor, "is_regression", False)
Maxim Neumann's avatar
Maxim Neumann committed
1557
  has_sample_weights = getattr(processor, "weight_key", False)
Maxim Neumann's avatar
Maxim Neumann committed
1558

stephenwu's avatar
stephenwu committed
1559
1560
1561
  num_training_data = 0
  if train_data_output_path:
    train_input_data_examples = processor.get_train_examples(data_dir)
stephenwu's avatar
stephenwu committed
1562
1563
1564
    file_based_convert_examples_to_features(train_input_data_examples,
                                            label_list, max_seq_length,
                                            tokenizer, train_data_output_path,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1565
1566
                                            label_type,
                                            processor.featurize_example)
stephenwu's avatar
stephenwu committed
1567
    num_training_data = len(train_input_data_examples)
1568
1569
1570
1571
1572

  if eval_data_output_path:
    eval_input_data_examples = processor.get_dev_examples(data_dir)
    file_based_convert_examples_to_features(eval_input_data_examples,
                                            label_list, max_seq_length,
Maxim Neumann's avatar
Maxim Neumann committed
1573
                                            tokenizer, eval_data_output_path,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1574
1575
                                            label_type,
                                            processor.featurize_example)
1576

1577
1578
1579
1580
1581
1582
  meta_data = {
      "processor_type": processor.get_processor_name(),
      "train_data_size": num_training_data,
      "max_seq_length": max_seq_length,
  }

Tianqi Liu's avatar
Tianqi Liu committed
1583
1584
1585
1586
1587
  if test_data_output_path:
    test_input_data_examples = processor.get_test_examples(data_dir)
    if isinstance(test_input_data_examples, dict):
      for language, examples in test_input_data_examples.items():
        file_based_convert_examples_to_features(
Tianqi Liu's avatar
Tianqi Liu committed
1588
            examples, label_list, max_seq_length, tokenizer,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1589
1590
            test_data_output_path.format(language), label_type,
            processor.featurize_example)
1591
        meta_data["test_{}_data_size".format(language)] = len(examples)
Tianqi Liu's avatar
Tianqi Liu committed
1592
1593
1594
    else:
      file_based_convert_examples_to_features(test_input_data_examples,
                                              label_list, max_seq_length,
Maxim Neumann's avatar
Maxim Neumann committed
1595
                                              tokenizer, test_data_output_path,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1596
1597
                                              label_type,
                                              processor.featurize_example)
1598
      meta_data["test_data_size"] = len(test_input_data_examples)
Tianqi Liu's avatar
Tianqi Liu committed
1599

Maxim Neumann's avatar
Maxim Neumann committed
1600
1601
1602
1603
1604
1605
  if is_regression:
    meta_data["task_type"] = "bert_regression"
    meta_data["label_type"] = {int: "int", float: "float"}[label_type]
  else:
    meta_data["task_type"] = "bert_classification"
    meta_data["num_labels"] = len(processor.get_labels())
Maxim Neumann's avatar
Maxim Neumann committed
1606
1607
  if has_sample_weights:
    meta_data["has_sample_weights"] = True
1608
1609
1610
1611
1612

  if eval_data_output_path:
    meta_data["eval_data_size"] = len(eval_input_data_examples)

  return meta_data