model_builder.py 52 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A function to build a DetectionModel from configuration."""
17

18
import functools
19
import sys
Vighnesh Birodkar's avatar
Vighnesh Birodkar committed
20
21
22

from absl import logging

23
24
25
26
27
28
29
30
31
from object_detection.builders import anchor_generator_builder
from object_detection.builders import box_coder_builder
from object_detection.builders import box_predictor_builder
from object_detection.builders import hyperparams_builder
from object_detection.builders import image_resizer_builder
from object_detection.builders import losses_builder
from object_detection.builders import matcher_builder
from object_detection.builders import post_processing_builder
from object_detection.builders import region_similarity_calculator_builder as sim_calc
32
from object_detection.core import balanced_positive_negative_sampler as sampler
33
from object_detection.core import post_processing
34
from object_detection.core import target_assigner
35
36
from object_detection.meta_architectures import center_net_meta_arch
from object_detection.meta_architectures import context_rcnn_meta_arch
37
38
39
from object_detection.meta_architectures import faster_rcnn_meta_arch
from object_detection.meta_architectures import rfcn_meta_arch
from object_detection.meta_architectures import ssd_meta_arch
40
from object_detection.predictors.heads import mask_head
41
from object_detection.protos import losses_pb2
42
from object_detection.protos import model_pb2
43
from object_detection.utils import label_map_util
44
from object_detection.utils import ops
45
from object_detection.utils import spatial_transform_ops as spatial_ops
46
47
48
49
50
51
52
53
54
from object_detection.utils import tf_version

## Feature Extractors for TF
## This section conditionally imports different feature extractors based on the
## Tensorflow version.
##
# pylint: disable=g-import-not-at-top
if tf_version.is_tf2():
  from object_detection.models import center_net_hourglass_feature_extractor
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
55
  from object_detection.models import center_net_mobilenet_v2_feature_extractor
56
  from object_detection.models import center_net_mobilenet_v2_fpn_feature_extractor
57
  from object_detection.models import center_net_resnet_feature_extractor
58
  from object_detection.models import center_net_resnet_v1_fpn_feature_extractor
59
60
61
  from object_detection.models import faster_rcnn_inception_resnet_v2_keras_feature_extractor as frcnn_inc_res_keras
  from object_detection.models import faster_rcnn_resnet_keras_feature_extractor as frcnn_resnet_keras
  from object_detection.models import ssd_resnet_v1_fpn_keras_feature_extractor as ssd_resnet_v1_fpn_keras
62
  from object_detection.models import faster_rcnn_resnet_v1_fpn_keras_feature_extractor as frcnn_resnet_fpn_keras
63
64
65
66
67
  from object_detection.models.ssd_mobilenet_v1_fpn_keras_feature_extractor import SSDMobileNetV1FpnKerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_keras_feature_extractor import SSDMobileNetV1KerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_fpn_keras_feature_extractor import SSDMobileNetV2FpnKerasFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_keras_feature_extractor import SSDMobileNetV2KerasFeatureExtractor
  from object_detection.predictors import rfcn_keras_box_predictor
68
69
  if sys.version_info[0] >= 3:
    from object_detection.models import ssd_efficientnet_bifpn_feature_extractor as ssd_efficientnet_bifpn
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

if tf_version.is_tf1():
  from object_detection.models import faster_rcnn_inception_resnet_v2_feature_extractor as frcnn_inc_res
  from object_detection.models import faster_rcnn_inception_v2_feature_extractor as frcnn_inc_v2
  from object_detection.models import faster_rcnn_nas_feature_extractor as frcnn_nas
  from object_detection.models import faster_rcnn_pnas_feature_extractor as frcnn_pnas
  from object_detection.models import faster_rcnn_resnet_v1_feature_extractor as frcnn_resnet_v1
  from object_detection.models import ssd_resnet_v1_fpn_feature_extractor as ssd_resnet_v1_fpn
  from object_detection.models import ssd_resnet_v1_ppn_feature_extractor as ssd_resnet_v1_ppn
  from object_detection.models.embedded_ssd_mobilenet_v1_feature_extractor import EmbeddedSSDMobileNetV1FeatureExtractor
  from object_detection.models.ssd_inception_v2_feature_extractor import SSDInceptionV2FeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_fpn_feature_extractor import SSDMobileNetV2FpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_mnasfpn_feature_extractor import SSDMobileNetV2MnasFPNFeatureExtractor
  from object_detection.models.ssd_inception_v3_feature_extractor import SSDInceptionV3FeatureExtractor
  from object_detection.models.ssd_mobilenet_edgetpu_feature_extractor import SSDMobileNetEdgeTPUFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_fpn_feature_extractor import SSDMobileNetV1FpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v1_ppn_feature_extractor import SSDMobileNetV1PpnFeatureExtractor
  from object_detection.models.ssd_mobilenet_v2_feature_extractor import SSDMobileNetV2FeatureExtractor
  from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3LargeFeatureExtractor
  from object_detection.models.ssd_mobilenet_v3_feature_extractor import SSDMobileNetV3SmallFeatureExtractor
91
92
93
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetCPUFeatureExtractor
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetDSPFeatureExtractor
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetEdgeTPUFeatureExtractor
94
  from object_detection.models.ssd_mobiledet_feature_extractor import SSDMobileDetGPUFeatureExtractor
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
  from object_detection.models.ssd_pnasnet_feature_extractor import SSDPNASNetFeatureExtractor
  from object_detection.predictors import rfcn_box_predictor
# pylint: enable=g-import-not-at-top

if tf_version.is_tf2():
  SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
      'ssd_mobilenet_v1_keras': SSDMobileNetV1KerasFeatureExtractor,
      'ssd_mobilenet_v1_fpn_keras': SSDMobileNetV1FpnKerasFeatureExtractor,
      'ssd_mobilenet_v2_keras': SSDMobileNetV2KerasFeatureExtractor,
      'ssd_mobilenet_v2_fpn_keras': SSDMobileNetV2FpnKerasFeatureExtractor,
      'ssd_resnet50_v1_fpn_keras':
          ssd_resnet_v1_fpn_keras.SSDResNet50V1FpnKerasFeatureExtractor,
      'ssd_resnet101_v1_fpn_keras':
          ssd_resnet_v1_fpn_keras.SSDResNet101V1FpnKerasFeatureExtractor,
      'ssd_resnet152_v1_fpn_keras':
          ssd_resnet_v1_fpn_keras.SSDResNet152V1FpnKerasFeatureExtractor,
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
      'ssd_efficientnet-b0_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB0BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b1_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB1BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b2_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB2BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b3_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB3BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b4_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB4BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b5_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB5BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b6_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB6BiFPNKerasFeatureExtractor,
      'ssd_efficientnet-b7_bifpn_keras':
          ssd_efficientnet_bifpn.SSDEfficientNetB7BiFPNKerasFeatureExtractor,
127
  }
128

129
130
131
132
133
134
135
136
137
  FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = {
      'faster_rcnn_resnet50_keras':
          frcnn_resnet_keras.FasterRCNNResnet50KerasFeatureExtractor,
      'faster_rcnn_resnet101_keras':
          frcnn_resnet_keras.FasterRCNNResnet101KerasFeatureExtractor,
      'faster_rcnn_resnet152_keras':
          frcnn_resnet_keras.FasterRCNNResnet152KerasFeatureExtractor,
      'faster_rcnn_inception_resnet_v2_keras':
      frcnn_inc_res_keras.FasterRCNNInceptionResnetV2KerasFeatureExtractor,
138
      'faster_rcnn_resnet50_fpn_keras':
139
          frcnn_resnet_fpn_keras.FasterRCNNResnet50FpnKerasFeatureExtractor,
140
      'faster_rcnn_resnet101_fpn_keras':
141
          frcnn_resnet_fpn_keras.FasterRCNNResnet101FpnKerasFeatureExtractor,
142
      'faster_rcnn_resnet152_fpn_keras':
143
          frcnn_resnet_fpn_keras.FasterRCNNResnet152FpnKerasFeatureExtractor,
144
  }
145

146
  CENTER_NET_EXTRACTOR_FUNCTION_MAP = {
147
148
149
150
      'resnet_v2_50':
          center_net_resnet_feature_extractor.resnet_v2_50,
      'resnet_v2_101':
          center_net_resnet_feature_extractor.resnet_v2_101,
Yu-hui Chen's avatar
Yu-hui Chen committed
151
152
153
154
      'resnet_v1_18_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_18_fpn,
      'resnet_v1_34_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_34_fpn,
155
156
157
158
      'resnet_v1_50_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_50_fpn,
      'resnet_v1_101_fpn':
          center_net_resnet_v1_fpn_feature_extractor.resnet_v1_101_fpn,
159
160
161
162
163
164
165
166
      'hourglass_10':
          center_net_hourglass_feature_extractor.hourglass_10,
      'hourglass_20':
          center_net_hourglass_feature_extractor.hourglass_20,
      'hourglass_32':
          center_net_hourglass_feature_extractor.hourglass_32,
      'hourglass_52':
          center_net_hourglass_feature_extractor.hourglass_52,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
167
168
169
170
      'hourglass_104':
          center_net_hourglass_feature_extractor.hourglass_104,
      'mobilenet_v2':
          center_net_mobilenet_v2_feature_extractor.mobilenet_v2,
171
172
      'mobilenet_v2_fpn':
          center_net_mobilenet_v2_fpn_feature_extractor.mobilenet_v2_fpn,
173
174
      'mobilenet_v2_fpn_sep_conv':
          center_net_mobilenet_v2_fpn_feature_extractor.mobilenet_v2_fpn,
175
  }
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
  FEATURE_EXTRACTOR_MAPS = [
      CENTER_NET_EXTRACTOR_FUNCTION_MAP,
      FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP,
      SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP
  ]

if tf_version.is_tf1():
  SSD_FEATURE_EXTRACTOR_CLASS_MAP = {
      'ssd_inception_v2':
          SSDInceptionV2FeatureExtractor,
      'ssd_inception_v3':
          SSDInceptionV3FeatureExtractor,
      'ssd_mobilenet_v1':
          SSDMobileNetV1FeatureExtractor,
      'ssd_mobilenet_v1_fpn':
          SSDMobileNetV1FpnFeatureExtractor,
      'ssd_mobilenet_v1_ppn':
          SSDMobileNetV1PpnFeatureExtractor,
      'ssd_mobilenet_v2':
          SSDMobileNetV2FeatureExtractor,
      'ssd_mobilenet_v2_fpn':
          SSDMobileNetV2FpnFeatureExtractor,
      'ssd_mobilenet_v2_mnasfpn':
          SSDMobileNetV2MnasFPNFeatureExtractor,
      'ssd_mobilenet_v3_large':
          SSDMobileNetV3LargeFeatureExtractor,
      'ssd_mobilenet_v3_small':
          SSDMobileNetV3SmallFeatureExtractor,
      'ssd_mobilenet_edgetpu':
          SSDMobileNetEdgeTPUFeatureExtractor,
      'ssd_resnet50_v1_fpn':
          ssd_resnet_v1_fpn.SSDResnet50V1FpnFeatureExtractor,
      'ssd_resnet101_v1_fpn':
          ssd_resnet_v1_fpn.SSDResnet101V1FpnFeatureExtractor,
      'ssd_resnet152_v1_fpn':
          ssd_resnet_v1_fpn.SSDResnet152V1FpnFeatureExtractor,
      'ssd_resnet50_v1_ppn':
          ssd_resnet_v1_ppn.SSDResnet50V1PpnFeatureExtractor,
      'ssd_resnet101_v1_ppn':
          ssd_resnet_v1_ppn.SSDResnet101V1PpnFeatureExtractor,
      'ssd_resnet152_v1_ppn':
          ssd_resnet_v1_ppn.SSDResnet152V1PpnFeatureExtractor,
      'embedded_ssd_mobilenet_v1':
          EmbeddedSSDMobileNetV1FeatureExtractor,
      'ssd_pnasnet':
          SSDPNASNetFeatureExtractor,
223
224
225
226
227
228
229
230
      'ssd_mobiledet_cpu':
          SSDMobileDetCPUFeatureExtractor,
      'ssd_mobiledet_dsp':
          SSDMobileDetDSPFeatureExtractor,
      'ssd_mobiledet_edgetpu':
          SSDMobileDetEdgeTPUFeatureExtractor,
      'ssd_mobiledet_gpu':
          SSDMobileDetGPUFeatureExtractor,
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
  }

  FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP = {
      'faster_rcnn_nas':
      frcnn_nas.FasterRCNNNASFeatureExtractor,
      'faster_rcnn_pnas':
      frcnn_pnas.FasterRCNNPNASFeatureExtractor,
      'faster_rcnn_inception_resnet_v2':
      frcnn_inc_res.FasterRCNNInceptionResnetV2FeatureExtractor,
      'faster_rcnn_inception_v2':
      frcnn_inc_v2.FasterRCNNInceptionV2FeatureExtractor,
      'faster_rcnn_resnet50':
      frcnn_resnet_v1.FasterRCNNResnet50FeatureExtractor,
      'faster_rcnn_resnet101':
      frcnn_resnet_v1.FasterRCNNResnet101FeatureExtractor,
      'faster_rcnn_resnet152':
      frcnn_resnet_v1.FasterRCNNResnet152FeatureExtractor,
  }

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
250
251
  CENTER_NET_EXTRACTOR_FUNCTION_MAP = {}

252
253
  FEATURE_EXTRACTOR_MAPS = [
      SSD_FEATURE_EXTRACTOR_CLASS_MAP,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
254
255
      FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP,
      CENTER_NET_EXTRACTOR_FUNCTION_MAP
256
  ]
257

258
259
260
261
262
263
264

def _check_feature_extractor_exists(feature_extractor_type):
  feature_extractors = set().union(*FEATURE_EXTRACTOR_MAPS)
  if feature_extractor_type not in feature_extractors:
    raise ValueError('{} is not supported. See `model_builder.py` for features '
                     'extractors compatible with different versions of '
                     'Tensorflow'.format(feature_extractor_type))
265

266

267
268
269
def _build_ssd_feature_extractor(feature_extractor_config,
                                 is_training,
                                 freeze_batchnorm,
270
                                 reuse_weights=None):
271
272
273
274
275
  """Builds a ssd_meta_arch.SSDFeatureExtractor based on config.

  Args:
    feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto.
    is_training: True if this feature extractor is being built for training.
276
277
278
279
    freeze_batchnorm: Whether to freeze batch norm parameters during
      training or not. When training with a small batch size (e.g. 1), it is
      desirable to freeze batch norm update and use pretrained batch norm
      params.
280
281
282
283
284
285
286
287
288
289
290
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    ssd_meta_arch.SSDFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  depth_multiplier = feature_extractor_config.depth_multiplier
  min_depth = feature_extractor_config.min_depth
291
  pad_to_multiple = feature_extractor_config.pad_to_multiple
292
  use_explicit_padding = feature_extractor_config.use_explicit_padding
293
  use_depthwise = feature_extractor_config.use_depthwise
294

295
296
  is_keras = tf_version.is_tf2()
  if is_keras:
297
298
299
300
301
    conv_hyperparams = hyperparams_builder.KerasLayerHyperparams(
        feature_extractor_config.conv_hyperparams)
  else:
    conv_hyperparams = hyperparams_builder.build(
        feature_extractor_config.conv_hyperparams, is_training)
302
303
  override_base_feature_extractor_hyperparams = (
      feature_extractor_config.override_base_feature_extractor_hyperparams)
304

305
  if not is_keras and feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP:
306
307
    raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type))

308
  if is_keras:
309
310
311
312
    feature_extractor_class = SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
        feature_type]
  else:
    feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type]
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
  kwargs = {
      'is_training':
          is_training,
      'depth_multiplier':
          depth_multiplier,
      'min_depth':
          min_depth,
      'pad_to_multiple':
          pad_to_multiple,
      'use_explicit_padding':
          use_explicit_padding,
      'use_depthwise':
          use_depthwise,
      'override_base_feature_extractor_hyperparams':
          override_base_feature_extractor_hyperparams
  }

330
331
332
333
334
335
  if feature_extractor_config.HasField('replace_preprocessor_with_placeholder'):
    kwargs.update({
        'replace_preprocessor_with_placeholder':
            feature_extractor_config.replace_preprocessor_with_placeholder
    })

pkulzc's avatar
pkulzc committed
336
337
338
  if feature_extractor_config.HasField('num_layers'):
    kwargs.update({'num_layers': feature_extractor_config.num_layers})

339
  if is_keras:
340
341
342
343
344
345
346
347
348
349
350
    kwargs.update({
        'conv_hyperparams': conv_hyperparams,
        'inplace_batchnorm_update': False,
        'freeze_batchnorm': freeze_batchnorm
    })
  else:
    kwargs.update({
        'conv_hyperparams_fn': conv_hyperparams,
        'reuse_weights': reuse_weights,
    })

351

352
353
  if feature_extractor_config.HasField('fpn'):
    kwargs.update({
354
355
356
357
358
359
        'fpn_min_level':
            feature_extractor_config.fpn.min_level,
        'fpn_max_level':
            feature_extractor_config.fpn.max_level,
        'additional_layer_depth':
            feature_extractor_config.fpn.additional_layer_depth,
360
361
    })

362
363
364
365
366
367
368
369
  if feature_extractor_config.HasField('bifpn'):
    kwargs.update({
        'bifpn_min_level': feature_extractor_config.bifpn.min_level,
        'bifpn_max_level': feature_extractor_config.bifpn.max_level,
        'bifpn_num_iterations': feature_extractor_config.bifpn.num_iterations,
        'bifpn_num_filters': feature_extractor_config.bifpn.num_filters,
        'bifpn_combine_method': feature_extractor_config.bifpn.combine_method,
    })
370

371
  return feature_extractor_class(**kwargs)
372
373


374
def _build_ssd_model(ssd_config, is_training, add_summaries):
375
376
377
378
379
380
  """Builds an SSD detection model based on the model config.

  Args:
    ssd_config: A ssd.proto object containing the config for the desired
      SSDMetaArch.
    is_training: True if this model is being built for training purposes.
381
    add_summaries: Whether to add tf summaries in the model.
382
383
  Returns:
    SSDMetaArch based on the config.
384

385
386
387
388
389
  Raises:
    ValueError: If ssd_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = ssd_config.num_classes
390
  _check_feature_extractor_exists(ssd_config.feature_extractor.type)
391
392

  # Feature extractor
393
  feature_extractor = _build_ssd_feature_extractor(
394
      feature_extractor_config=ssd_config.feature_extractor,
395
      freeze_batchnorm=ssd_config.freeze_batchnorm,
396
      is_training=is_training)
397
398
399
400
401

  box_coder = box_coder_builder.build(ssd_config.box_coder)
  matcher = matcher_builder.build(ssd_config.matcher)
  region_similarity_calculator = sim_calc.build(
      ssd_config.similarity_calculator)
402
  encode_background_as_zeros = ssd_config.encode_background_as_zeros
403
  negative_class_weight = ssd_config.negative_class_weight
404
405
  anchor_generator = anchor_generator_builder.build(
      ssd_config.anchor_generator)
406
407
  if feature_extractor.is_keras_model:
    ssd_box_predictor = box_predictor_builder.build_keras(
408
        hyperparams_fn=hyperparams_builder.KerasLayerHyperparams,
409
410
411
412
413
414
415
416
417
418
419
420
        freeze_batchnorm=ssd_config.freeze_batchnorm,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=anchor_generator
        .num_anchors_per_location(),
        box_predictor_config=ssd_config.box_predictor,
        is_training=is_training,
        num_classes=num_classes,
        add_background_class=ssd_config.add_background_class)
  else:
    ssd_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build, ssd_config.box_predictor, is_training,
        num_classes, ssd_config.add_background_class)
421
422
423
424
  image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
  non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
      ssd_config.post_processing)
  (classification_loss, localization_loss, classification_weight,
425
426
   localization_weight, hard_example_miner, random_example_sampler,
   expected_loss_weights_fn) = losses_builder.build(ssd_config.loss)
427
  normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
428
  normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize
429
430
431
432

  equalization_loss_config = ops.EqualizationLossConfig(
      weight=ssd_config.loss.equalization_loss.weight,
      exclude_prefixes=ssd_config.loss.equalization_loss.exclude_prefixes)
433
434
435
436
437

  target_assigner_instance = target_assigner.TargetAssigner(
      region_similarity_calculator,
      matcher,
      box_coder,
438
      negative_class_weight=negative_class_weight)
439

440
  ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch
441
  kwargs = {}
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

  return ssd_meta_arch_fn(
      is_training=is_training,
      anchor_generator=anchor_generator,
      box_predictor=ssd_box_predictor,
      box_coder=box_coder,
      feature_extractor=feature_extractor,
      encode_background_as_zeros=encode_background_as_zeros,
      image_resizer_fn=image_resizer_fn,
      non_max_suppression_fn=non_max_suppression_fn,
      score_conversion_fn=score_conversion_fn,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      classification_loss_weight=classification_weight,
      localization_loss_weight=localization_weight,
      normalize_loss_by_num_matches=normalize_loss_by_num_matches,
      hard_example_miner=hard_example_miner,
459
      target_assigner_instance=target_assigner_instance,
460
      add_summaries=add_summaries,
461
462
      normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
      freeze_batchnorm=ssd_config.freeze_batchnorm,
463
      inplace_batchnorm_update=ssd_config.inplace_batchnorm_update,
464
      add_background_class=ssd_config.add_background_class,
465
      explicit_background_class=ssd_config.explicit_background_class,
466
      random_example_sampler=random_example_sampler,
467
468
469
470
      expected_loss_weights_fn=expected_loss_weights_fn,
      use_confidences_as_targets=ssd_config.use_confidences_as_targets,
      implicit_example_weight=ssd_config.implicit_example_weight,
      equalization_loss_config=equalization_loss_config,
471
472
      return_raw_detections_during_predict=(
          ssd_config.return_raw_detections_during_predict),
473
      **kwargs)
474
475
476


def _build_faster_rcnn_feature_extractor(
477
    feature_extractor_config, is_training, reuse_weights=True,
478
    inplace_batchnorm_update=False):
479
480
481
482
483
484
485
  """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.
486
487
488
489
490
    inplace_batchnorm_update: Whether to update batch_norm inplace during
      training. This is required for batch norm to work correctly on TPUs. When
      this is false, user must add a control dependency on
      tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
      norm moving average parameters.
491
492
493
494
495
496
497

  Returns:
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
498
499
  if inplace_batchnorm_update:
    raise ValueError('inplace batchnorm updates not supported.')
500
501
502
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
503
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable
504
505
506
507
508
509
510

  if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
511
      is_training, first_stage_features_stride,
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
      batch_norm_trainable, reuse_weights=reuse_weights)


def _build_faster_rcnn_keras_feature_extractor(
    feature_extractor_config, is_training,
    inplace_batchnorm_update=False):
  """Builds a faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor from config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    inplace_batchnorm_update: Whether to update batch_norm inplace during
      training. This is required for batch norm to work correctly on TPUs. When
      this is false, user must add a control dependency on
      tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
      norm moving average parameters.

  Returns:
    faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  if inplace_batchnorm_update:
    raise ValueError('inplace batchnorm updates not supported.')
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable

  if feature_type not in FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

  kwargs = {}

  if feature_extractor_config.HasField('conv_hyperparams'):
    kwargs.update({
        'conv_hyperparams':
            hyperparams_builder.KerasLayerHyperparams(
                feature_extractor_config.conv_hyperparams),
        'override_base_feature_extractor_hyperparams':
            feature_extractor_config.override_base_feature_extractor_hyperparams
    })

  if feature_extractor_config.HasField('fpn'):
    kwargs.update({
        'fpn_min_level':
            feature_extractor_config.fpn.min_level,
        'fpn_max_level':
            feature_extractor_config.fpn.max_level,
        'additional_layer_depth':
            feature_extractor_config.fpn.additional_layer_depth,
    })

570
571
  return feature_extractor_class(
      is_training, first_stage_features_stride,
572
      batch_norm_trainable, **kwargs)
573
574


575
def _build_faster_rcnn_model(frcnn_config, is_training, add_summaries):
576
577
578
579
580
581
582
  """Builds a Faster R-CNN or R-FCN detection model based on the model config.

  Builds R-FCN model if the second_stage_box_predictor in the config is of type
  `rfcn_box_predictor` else builds a Faster R-CNN model.

  Args:
    frcnn_config: A faster_rcnn.proto object containing the config for the
583
      desired FasterRCNNMetaArch or RFCNMetaArch.
584
    is_training: True if this model is being built for training purposes.
585
    add_summaries: Whether to add tf summaries in the model.
586
587
588

  Returns:
    FasterRCNNMetaArch based on the config.
589

590
591
592
593
594
595
  Raises:
    ValueError: If frcnn_config.type is not recognized (i.e. not registered in
      model_class_map).
  """
  num_classes = frcnn_config.num_classes
  image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer)
596
597
  _check_feature_extractor_exists(frcnn_config.feature_extractor.type)
  is_keras = tf_version.is_tf2()
598

syiming's avatar
syiming committed
599
  if is_keras:
600
601
602
603
604
605
606
    feature_extractor = _build_faster_rcnn_keras_feature_extractor(
        frcnn_config.feature_extractor, is_training,
        inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
  else:
    feature_extractor = _build_faster_rcnn_feature_extractor(
        frcnn_config.feature_extractor, is_training,
        inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update)
607

608
  number_of_stages = frcnn_config.number_of_stages
609
610
611
  first_stage_anchor_generator = anchor_generator_builder.build(
      frcnn_config.first_stage_anchor_generator)

612
613
614
615
  first_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'proposal',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
616
  first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate
617
618
619
620
621
622
623
  if is_keras:
    first_stage_box_predictor_arg_scope_fn = (
        hyperparams_builder.KerasLayerHyperparams(
            frcnn_config.first_stage_box_predictor_conv_hyperparams))
  else:
    first_stage_box_predictor_arg_scope_fn = hyperparams_builder.build(
        frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training)
624
625
626
627
  first_stage_box_predictor_kernel_size = (
      frcnn_config.first_stage_box_predictor_kernel_size)
  first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth
  first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size
628
629
  use_static_shapes = frcnn_config.use_static_shapes and (
      frcnn_config.use_static_shapes_for_eval or is_training)
630
631
  first_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.first_stage_positive_balance_fraction,
632
633
      is_static=(frcnn_config.use_static_balanced_label_sampler and
                 use_static_shapes))
634
  first_stage_max_proposals = frcnn_config.first_stage_max_proposals
635
636
637
638
639
640
641
642
643
644
645
646
647
  if (frcnn_config.first_stage_nms_iou_threshold < 0 or
      frcnn_config.first_stage_nms_iou_threshold > 1.0):
    raise ValueError('iou_threshold not in [0, 1.0].')
  if (is_training and frcnn_config.second_stage_batch_size >
      first_stage_max_proposals):
    raise ValueError('second_stage_batch_size should be no greater than '
                     'first_stage_max_proposals.')
  first_stage_non_max_suppression_fn = functools.partial(
      post_processing.batch_multiclass_non_max_suppression,
      score_thresh=frcnn_config.first_stage_nms_score_threshold,
      iou_thresh=frcnn_config.first_stage_nms_iou_threshold,
      max_size_per_class=frcnn_config.first_stage_max_proposals,
      max_total_size=frcnn_config.first_stage_max_proposals,
Pooya Davoodi's avatar
Pooya Davoodi committed
648
      use_static_shapes=use_static_shapes,
649
      use_partitioned_nms=frcnn_config.use_partitioned_nms_in_first_stage,
Pooya Davoodi's avatar
Pooya Davoodi committed
650
      use_combined_nms=frcnn_config.use_combined_nms_in_first_stage)
651
652
653
654
655
656
657
658
  first_stage_loc_loss_weight = (
      frcnn_config.first_stage_localization_loss_weight)
  first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight

  initial_crop_size = frcnn_config.initial_crop_size
  maxpool_kernel_size = frcnn_config.maxpool_kernel_size
  maxpool_stride = frcnn_config.maxpool_stride

659
660
661
662
  second_stage_target_assigner = target_assigner.create_target_assigner(
      'FasterRCNN',
      'detection',
      use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher)
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
  if is_keras:
    second_stage_box_predictor = box_predictor_builder.build_keras(
        hyperparams_builder.KerasLayerHyperparams,
        freeze_batchnorm=False,
        inplace_batchnorm_update=False,
        num_predictions_per_location_list=[1],
        box_predictor_config=frcnn_config.second_stage_box_predictor,
        is_training=is_training,
        num_classes=num_classes)
  else:
    second_stage_box_predictor = box_predictor_builder.build(
        hyperparams_builder.build,
        frcnn_config.second_stage_box_predictor,
        is_training=is_training,
        num_classes=num_classes)
678
  second_stage_batch_size = frcnn_config.second_stage_batch_size
679
680
  second_stage_sampler = sampler.BalancedPositiveNegativeSampler(
      positive_fraction=frcnn_config.second_stage_balance_fraction,
681
682
      is_static=(frcnn_config.use_static_balanced_label_sampler and
                 use_static_shapes))
683
684
685
686
  (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn
  ) = post_processing_builder.build(frcnn_config.second_stage_post_processing)
  second_stage_localization_loss_weight = (
      frcnn_config.second_stage_localization_loss_weight)
687
688
689
  second_stage_classification_loss = (
      losses_builder.build_faster_rcnn_classification_loss(
          frcnn_config.second_stage_classification_loss))
690
691
  second_stage_classification_loss_weight = (
      frcnn_config.second_stage_classification_loss_weight)
692
693
  second_stage_mask_prediction_loss_weight = (
      frcnn_config.second_stage_mask_prediction_loss_weight)
694
695
696
697
698
699
700
701

  hard_example_miner = None
  if frcnn_config.HasField('hard_example_miner'):
    hard_example_miner = losses_builder.build_hard_example_miner(
        frcnn_config.hard_example_miner,
        second_stage_classification_loss_weight,
        second_stage_localization_loss_weight)

702
  crop_and_resize_fn = (
703
704
705
      spatial_ops.multilevel_matmul_crop_and_resize
      if frcnn_config.use_matmul_crop_and_resize
      else spatial_ops.multilevel_native_crop_and_resize)
706
707
  clip_anchors_to_image = (
      frcnn_config.clip_anchors_to_image)
708

709
  common_kwargs = {
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
      'is_training':
          is_training,
      'num_classes':
          num_classes,
      'image_resizer_fn':
          image_resizer_fn,
      'feature_extractor':
          feature_extractor,
      'number_of_stages':
          number_of_stages,
      'first_stage_anchor_generator':
          first_stage_anchor_generator,
      'first_stage_target_assigner':
          first_stage_target_assigner,
      'first_stage_atrous_rate':
          first_stage_atrous_rate,
726
      'first_stage_box_predictor_arg_scope_fn':
727
          first_stage_box_predictor_arg_scope_fn,
728
      'first_stage_box_predictor_kernel_size':
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
          first_stage_box_predictor_kernel_size,
      'first_stage_box_predictor_depth':
          first_stage_box_predictor_depth,
      'first_stage_minibatch_size':
          first_stage_minibatch_size,
      'first_stage_sampler':
          first_stage_sampler,
      'first_stage_non_max_suppression_fn':
          first_stage_non_max_suppression_fn,
      'first_stage_max_proposals':
          first_stage_max_proposals,
      'first_stage_localization_loss_weight':
          first_stage_loc_loss_weight,
      'first_stage_objectness_loss_weight':
          first_stage_obj_loss_weight,
      'second_stage_target_assigner':
          second_stage_target_assigner,
      'second_stage_batch_size':
          second_stage_batch_size,
      'second_stage_sampler':
          second_stage_sampler,
750
      'second_stage_non_max_suppression_fn':
751
752
753
          second_stage_non_max_suppression_fn,
      'second_stage_score_conversion_fn':
          second_stage_score_conversion_fn,
754
      'second_stage_localization_loss_weight':
755
          second_stage_localization_loss_weight,
756
      'second_stage_classification_loss':
757
          second_stage_classification_loss,
758
      'second_stage_classification_loss_weight':
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
          second_stage_classification_loss_weight,
      'hard_example_miner':
          hard_example_miner,
      'add_summaries':
          add_summaries,
      'crop_and_resize_fn':
          crop_and_resize_fn,
      'clip_anchors_to_image':
          clip_anchors_to_image,
      'use_static_shapes':
          use_static_shapes,
      'resize_masks':
          frcnn_config.resize_masks,
      'return_raw_detections_during_predict':
          frcnn_config.return_raw_detections_during_predict,
      'output_final_box_features':
775
776
777
          frcnn_config.output_final_box_features,
      'output_final_box_rpn_features':
          frcnn_config.output_final_box_rpn_features,
778
  }
779

780
781
782
783
784
  if ((not is_keras and isinstance(second_stage_box_predictor,
                                   rfcn_box_predictor.RfcnBoxPredictor)) or
      (is_keras and
       isinstance(second_stage_box_predictor,
                  rfcn_keras_box_predictor.RfcnKerasBoxPredictor))):
785
786
787
    return rfcn_meta_arch.RFCNMetaArch(
        second_stage_rfcn_box_predictor=second_stage_box_predictor,
        **common_kwargs)
788
789
790
791
792
793
  elif frcnn_config.HasField('context_config'):
    context_config = frcnn_config.context_config
    common_kwargs.update({
        'attention_bottleneck_dimension':
            context_config.attention_bottleneck_dimension,
        'attention_temperature':
794
795
796
797
798
799
800
801
802
803
804
805
806
            context_config.attention_temperature,
        'use_self_attention':
            context_config.use_self_attention,
        'use_long_term_attention':
            context_config.use_long_term_attention,
        'self_attention_in_sequence':
            context_config.self_attention_in_sequence,
        'num_attention_heads':
            context_config.num_attention_heads,
        'num_attention_layers':
            context_config.num_attention_layers,
        'attention_position':
            context_config.attention_position
807
808
809
810
811
812
813
814
815
    })
    return context_rcnn_meta_arch.ContextRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
        second_stage_mask_prediction_loss_weight=(
            second_stage_mask_prediction_loss_weight),
        **common_kwargs)
816
817
818
819
820
821
  else:
    return faster_rcnn_meta_arch.FasterRCNNMetaArch(
        initial_crop_size=initial_crop_size,
        maxpool_kernel_size=maxpool_kernel_size,
        maxpool_stride=maxpool_stride,
        second_stage_mask_rcnn_box_predictor=second_stage_box_predictor,
822
823
        second_stage_mask_prediction_loss_weight=(
            second_stage_mask_prediction_loss_weight),
824
        **common_kwargs)
825
826
827
828
829
830
831
832
833

EXPERIMENTAL_META_ARCH_BUILDER_MAP = {
}


def _build_experimental_model(config, is_training, add_summaries=True):
  return EXPERIMENTAL_META_ARCH_BUILDER_MAP[config.name](
      is_training, add_summaries)

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861

# The class ID in the groundtruth/model architecture is usually 0-based while
# the ID in the label map is 1-based. The offset is used to convert between the
# the two.
CLASS_ID_OFFSET = 1
KEYPOINT_STD_DEV_DEFAULT = 1.0


def keypoint_proto_to_params(kp_config, keypoint_map_dict):
  """Converts CenterNet.KeypointEstimation proto to parameter namedtuple."""
  label_map_item = keypoint_map_dict[kp_config.keypoint_class_name]

  classification_loss, localization_loss, _, _, _, _, _ = (
      losses_builder.build(kp_config.loss))

  keypoint_indices = [
      keypoint.id for keypoint in label_map_item.keypoints
  ]
  keypoint_labels = [
      keypoint.label for keypoint in label_map_item.keypoints
  ]
  keypoint_std_dev_dict = {
      label: KEYPOINT_STD_DEV_DEFAULT for label in keypoint_labels
  }
  if kp_config.keypoint_label_to_std:
    for label, value in kp_config.keypoint_label_to_std.items():
      keypoint_std_dev_dict[label] = value
  keypoint_std_dev = [keypoint_std_dev_dict[label] for label in keypoint_labels]
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
  if kp_config.HasField('heatmap_head_params'):
    heatmap_head_num_filters = list(kp_config.heatmap_head_params.num_filters)
    heatmap_head_kernel_sizes = list(kp_config.heatmap_head_params.kernel_sizes)
  else:
    heatmap_head_num_filters = [256]
    heatmap_head_kernel_sizes = [3]
  if kp_config.HasField('offset_head_params'):
    offset_head_num_filters = list(kp_config.offset_head_params.num_filters)
    offset_head_kernel_sizes = list(kp_config.offset_head_params.kernel_sizes)
  else:
    offset_head_num_filters = [256]
    offset_head_kernel_sizes = [3]
  if kp_config.HasField('regress_head_params'):
    regress_head_num_filters = list(kp_config.regress_head_params.num_filters)
    regress_head_kernel_sizes = list(
        kp_config.regress_head_params.kernel_sizes)
  else:
    regress_head_num_filters = [256]
    regress_head_kernel_sizes = [3]
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
  return center_net_meta_arch.KeypointEstimationParams(
      task_name=kp_config.task_name,
      class_id=label_map_item.id - CLASS_ID_OFFSET,
      keypoint_indices=keypoint_indices,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      keypoint_labels=keypoint_labels,
      keypoint_std_dev=keypoint_std_dev,
      task_loss_weight=kp_config.task_loss_weight,
      keypoint_regression_loss_weight=kp_config.keypoint_regression_loss_weight,
      keypoint_heatmap_loss_weight=kp_config.keypoint_heatmap_loss_weight,
      keypoint_offset_loss_weight=kp_config.keypoint_offset_loss_weight,
      heatmap_bias_init=kp_config.heatmap_bias_init,
      keypoint_candidate_score_threshold=(
          kp_config.keypoint_candidate_score_threshold),
      num_candidates_per_keypoint=kp_config.num_candidates_per_keypoint,
      peak_max_pool_kernel_size=kp_config.peak_max_pool_kernel_size,
      unmatched_keypoint_score=kp_config.unmatched_keypoint_score,
      box_scale=kp_config.box_scale,
      candidate_search_scale=kp_config.candidate_search_scale,
901
902
      candidate_ranking_mode=kp_config.candidate_ranking_mode,
      offset_peak_radius=kp_config.offset_peak_radius,
903
904
905
      per_keypoint_offset=kp_config.per_keypoint_offset,
      predict_depth=kp_config.predict_depth,
      per_keypoint_depth=kp_config.per_keypoint_depth,
906
907
908
      keypoint_depth_loss_weight=kp_config.keypoint_depth_loss_weight,
      score_distance_offset=kp_config.score_distance_offset,
      clip_out_of_frame_keypoints=kp_config.clip_out_of_frame_keypoints,
909
910
911
912
913
914
915
      rescore_instances=kp_config.rescore_instances,
      heatmap_head_num_filters=heatmap_head_num_filters,
      heatmap_head_kernel_sizes=heatmap_head_kernel_sizes,
      offset_head_num_filters=offset_head_num_filters,
      offset_head_kernel_sizes=offset_head_kernel_sizes,
      regress_head_num_filters=regress_head_num_filters,
      regress_head_kernel_sizes=regress_head_kernel_sizes)
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944


def object_detection_proto_to_params(od_config):
  """Converts CenterNet.ObjectDetection proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy classification loss to avoid the loss_builder throwing error.
  # TODO(yuhuic): update the loss builder to take the classification loss
  # directly.
  loss.classification_loss.weighted_sigmoid.CopyFrom(
      losses_pb2.WeightedSigmoidClassificationLoss())
  loss.localization_loss.CopyFrom(od_config.localization_loss)
  _, localization_loss, _, _, _, _, _ = (losses_builder.build(loss))
  return center_net_meta_arch.ObjectDetectionParams(
      localization_loss=localization_loss,
      scale_loss_weight=od_config.scale_loss_weight,
      offset_loss_weight=od_config.offset_loss_weight,
      task_loss_weight=od_config.task_loss_weight)


def object_center_proto_to_params(oc_config):
  """Converts CenterNet.ObjectCenter proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy localization loss to avoid the loss_builder throwing error.
  # TODO(yuhuic): update the loss builder to take the localization loss
  # directly.
  loss.localization_loss.weighted_l2.CopyFrom(
      losses_pb2.WeightedL2LocalizationLoss())
  loss.classification_loss.CopyFrom(oc_config.classification_loss)
  classification_loss, _, _, _, _, _, _ = (losses_builder.build(loss))
945
946
947
  keypoint_weights_for_center = []
  if oc_config.keypoint_weights_for_center:
    keypoint_weights_for_center = list(oc_config.keypoint_weights_for_center)
948

949
  if oc_config.HasField('center_head_params'):
950
951
952
953
954
    center_head_num_filters = list(oc_config.center_head_params.num_filters)
    center_head_kernel_sizes = list(oc_config.center_head_params.kernel_sizes)
  else:
    center_head_num_filters = [256]
    center_head_kernel_sizes = [3]
955
956
957
958
959
  return center_net_meta_arch.ObjectCenterParams(
      classification_loss=classification_loss,
      object_center_loss_weight=oc_config.object_center_loss_weight,
      heatmap_bias_init=oc_config.heatmap_bias_init,
      min_box_overlap_iou=oc_config.min_box_overlap_iou,
960
      max_box_predictions=oc_config.max_box_predictions,
961
      use_labeled_classes=oc_config.use_labeled_classes,
962
963
964
      keypoint_weights_for_center=keypoint_weights_for_center,
      center_head_num_filters=center_head_num_filters,
      center_head_kernel_sizes=center_head_kernel_sizes)
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981


def mask_proto_to_params(mask_config):
  """Converts CenterNet.MaskEstimation proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy localization loss to avoid the loss_builder throwing error.
  loss.localization_loss.weighted_l2.CopyFrom(
      losses_pb2.WeightedL2LocalizationLoss())
  loss.classification_loss.CopyFrom(mask_config.classification_loss)
  classification_loss, _, _, _, _, _, _ = (losses_builder.build(loss))
  return center_net_meta_arch.MaskParams(
      classification_loss=classification_loss,
      task_loss_weight=mask_config.task_loss_weight,
      mask_height=mask_config.mask_height,
      mask_width=mask_config.mask_width,
      score_threshold=mask_config.score_threshold,
      heatmap_bias_init=mask_config.heatmap_bias_init)
982
983


984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
def densepose_proto_to_params(densepose_config):
  """Converts CenterNet.DensePoseEstimation proto to parameter namedtuple."""
  classification_loss, localization_loss, _, _, _, _, _ = (
      losses_builder.build(densepose_config.loss))
  return center_net_meta_arch.DensePoseParams(
      class_id=densepose_config.class_id,
      classification_loss=classification_loss,
      localization_loss=localization_loss,
      part_loss_weight=densepose_config.part_loss_weight,
      coordinate_loss_weight=densepose_config.coordinate_loss_weight,
      num_parts=densepose_config.num_parts,
      task_loss_weight=densepose_config.task_loss_weight,
      upsample_to_input_res=densepose_config.upsample_to_input_res,
      heatmap_bias_init=densepose_config.heatmap_bias_init)


1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
def tracking_proto_to_params(tracking_config):
  """Converts CenterNet.TrackEstimation proto to parameter namedtuple."""
  loss = losses_pb2.Loss()
  # Add dummy localization loss to avoid the loss_builder throwing error.
  # TODO(yuhuic): update the loss builder to take the localization loss
  # directly.
  loss.localization_loss.weighted_l2.CopyFrom(
      losses_pb2.WeightedL2LocalizationLoss())
  loss.classification_loss.CopyFrom(tracking_config.classification_loss)
  classification_loss, _, _, _, _, _, _ = losses_builder.build(loss)
  return center_net_meta_arch.TrackParams(
      num_track_ids=tracking_config.num_track_ids,
      reid_embed_size=tracking_config.reid_embed_size,
      classification_loss=classification_loss,
      num_fc_layers=tracking_config.num_fc_layers,
      task_loss_weight=tracking_config.task_loss_weight)


1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
def temporal_offset_proto_to_params(temporal_offset_config):
  """Converts CenterNet.TemporalOffsetEstimation proto to param-tuple."""
  loss = losses_pb2.Loss()
  # Add dummy classification loss to avoid the loss_builder throwing error.
  # TODO(yuhuic): update the loss builder to take the classification loss
  # directly.
  loss.classification_loss.weighted_sigmoid.CopyFrom(
      losses_pb2.WeightedSigmoidClassificationLoss())
  loss.localization_loss.CopyFrom(temporal_offset_config.localization_loss)
  _, localization_loss, _, _, _, _, _ = losses_builder.build(loss)
  return center_net_meta_arch.TemporalOffsetParams(
      localization_loss=localization_loss,
      task_loss_weight=temporal_offset_config.task_loss_weight)


1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
def _build_center_net_model(center_net_config, is_training, add_summaries):
  """Build a CenterNet detection model.

  Args:
    center_net_config: A CenterNet proto object with model configuration.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tf summaries in the model.

  Returns:
    CenterNetMetaArch based on the config.

  """

  image_resizer_fn = image_resizer_builder.build(
      center_net_config.image_resizer)
  _check_feature_extractor_exists(center_net_config.feature_extractor.type)
  feature_extractor = _build_center_net_feature_extractor(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1050
      center_net_config.feature_extractor, is_training)
1051
1052
1053
1054
1055
1056
1057
1058
  object_center_params = object_center_proto_to_params(
      center_net_config.object_center_params)

  object_detection_params = None
  if center_net_config.HasField('object_detection_task'):
    object_detection_params = object_detection_proto_to_params(
        center_net_config.object_detection_task)

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
  if center_net_config.HasField('deepmac_mask_estimation'):
    logging.warn(('Building experimental DeepMAC meta-arch.'
                  ' Some features may be omitted.'))
    deepmac_params = deepmac_meta_arch.deepmac_proto_to_params(
        center_net_config.deepmac_mask_estimation)
    return deepmac_meta_arch.DeepMACMetaArch(
        is_training=is_training,
        add_summaries=add_summaries,
        num_classes=center_net_config.num_classes,
        feature_extractor=feature_extractor,
        image_resizer_fn=image_resizer_fn,
        object_center_params=object_center_params,
        object_detection_params=object_detection_params,
        deepmac_params=deepmac_params)

1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
  keypoint_params_dict = None
  if center_net_config.keypoint_estimation_task:
    label_map_proto = label_map_util.load_labelmap(
        center_net_config.keypoint_label_map_path)
    keypoint_map_dict = {
        item.name: item for item in label_map_proto.item if item.keypoints
    }
    keypoint_params_dict = {}
    keypoint_class_id_set = set()
    all_keypoint_indices = []
    for task in center_net_config.keypoint_estimation_task:
      kp_params = keypoint_proto_to_params(task, keypoint_map_dict)
      keypoint_params_dict[task.task_name] = kp_params
      all_keypoint_indices.extend(kp_params.keypoint_indices)
      if kp_params.class_id in keypoint_class_id_set:
        raise ValueError(('Multiple keypoint tasks map to the same class id is '
                          'not allowed: %d' % kp_params.class_id))
      else:
        keypoint_class_id_set.add(kp_params.class_id)
    if len(all_keypoint_indices) > len(set(all_keypoint_indices)):
      raise ValueError('Some keypoint indices are used more than once.')
1095
1096
1097
1098
1099

  mask_params = None
  if center_net_config.HasField('mask_estimation_task'):
    mask_params = mask_proto_to_params(center_net_config.mask_estimation_task)

1100
1101
1102
1103
1104
  densepose_params = None
  if center_net_config.HasField('densepose_estimation_task'):
    densepose_params = densepose_proto_to_params(
        center_net_config.densepose_estimation_task)

1105
1106
1107
1108
1109
  track_params = None
  if center_net_config.HasField('track_estimation_task'):
    track_params = tracking_proto_to_params(
        center_net_config.track_estimation_task)

1110
1111
1112
1113
  temporal_offset_params = None
  if center_net_config.HasField('temporal_offset_task'):
    temporal_offset_params = temporal_offset_proto_to_params(
        center_net_config.temporal_offset_task)
1114
1115
1116
1117
  non_max_suppression_fn = None
  if center_net_config.HasField('post_processing'):
    non_max_suppression_fn, _ = post_processing_builder.build(
        center_net_config.post_processing)
Vighnesh Birodkar's avatar
Vighnesh Birodkar committed
1118

1119
1120
1121
1122
1123
1124
1125
1126
  return center_net_meta_arch.CenterNetMetaArch(
      is_training=is_training,
      add_summaries=add_summaries,
      num_classes=center_net_config.num_classes,
      feature_extractor=feature_extractor,
      image_resizer_fn=image_resizer_fn,
      object_center_params=object_center_params,
      object_detection_params=object_detection_params,
1127
      keypoint_params_dict=keypoint_params_dict,
1128
      mask_params=mask_params,
1129
      densepose_params=densepose_params,
1130
      track_params=track_params,
1131
      temporal_offset_params=temporal_offset_params,
1132
      use_depthwise=center_net_config.use_depthwise,
1133
1134
      compute_heatmap_sparse=center_net_config.compute_heatmap_sparse,
      non_max_suppression_fn=non_max_suppression_fn)
1135
1136


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1137
def _build_center_net_feature_extractor(feature_extractor_config, is_training):
1138
1139
1140
1141
1142
  """Build a CenterNet feature extractor from the given config."""

  if feature_extractor_config.type not in CENTER_NET_EXTRACTOR_FUNCTION_MAP:
    raise ValueError('\'{}\' is not a known CenterNet feature extractor type'
                     .format(feature_extractor_config.type))
1143
1144
1145
1146
  # For backwards compatibility:
  use_separable_conv = (
      feature_extractor_config.use_separable_conv or
      feature_extractor_config.type == 'mobilenet_v2_fpn_sep_conv')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1147
  kwargs = {
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
      'channel_means':
          list(feature_extractor_config.channel_means),
      'channel_stds':
          list(feature_extractor_config.channel_stds),
      'bgr_ordering':
          feature_extractor_config.bgr_ordering,
      'depth_multiplier':
          feature_extractor_config.depth_multiplier,
      'use_separable_conv':
          use_separable_conv,
      'upsampling_interpolation':
          feature_extractor_config.upsampling_interpolation,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1160
1161
  }

1162
1163

  return CENTER_NET_EXTRACTOR_FUNCTION_MAP[feature_extractor_config.type](
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1164
      **kwargs)
1165
1166
1167


META_ARCH_BUILDER_MAP = {
1168
1169
    'ssd': _build_ssd_model,
    'faster_rcnn': _build_faster_rcnn_model,
1170
1171
    'experimental_model': _build_experimental_model,
    'center_net': _build_center_net_model
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
}


def build(model_config, is_training, add_summaries=True):
  """Builds a DetectionModel based on the model config.

  Args:
    model_config: A model.proto object containing the config for the desired
      DetectionModel.
    is_training: True if this model is being built for training purposes.
    add_summaries: Whether to add tensorflow summaries in the model graph.
  Returns:
    DetectionModel based on the config.

  Raises:
    ValueError: On invalid meta architecture or model.
  """
  if not isinstance(model_config, model_pb2.DetectionModel):
    raise ValueError('model_config not of type model_pb2.DetectionModel.')

  meta_architecture = model_config.WhichOneof('model')

1194
  if meta_architecture not in META_ARCH_BUILDER_MAP:
1195
1196
    raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
  else:
1197
    build_func = META_ARCH_BUILDER_MAP[meta_architecture]
1198
1199
    return build_func(getattr(model_config, meta_architecture), is_training,
                      add_summaries)