ops_test.py 59.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Tests for object_detection.utils.ops."""
pkulzc's avatar
pkulzc committed
17
18
19
20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import numpy as np
pkulzc's avatar
pkulzc committed
22
23
import six
from six.moves import range
24
25
26
27
import tensorflow as tf

from object_detection.core import standard_fields as fields
from object_detection.utils import ops
28
from object_detection.utils import test_case
29

30
31
32
33
34
35
36
37
# pylint: disable=g-import-not-at-top
try:
  from tensorflow.contrib import framework as contrib_framework
  from tensorflow.contrib import slim
except ImportError:
  # TF 2.0 doesn't ship with contrib.
  pass
# pylint: enable=g-import-not-at-top
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

class NormalizedToImageCoordinatesTest(tf.test.TestCase):

  def test_normalized_to_image_coordinates(self):
    normalized_boxes = tf.placeholder(tf.float32, shape=(None, 1, 4))
    normalized_boxes_np = np.array([[[0.0, 0.0, 1.0, 1.0]],
                                    [[0.5, 0.5, 1.0, 1.0]]])
    image_shape = tf.convert_to_tensor([1, 4, 4, 3], dtype=tf.int32)
    absolute_boxes = ops.normalized_to_image_coordinates(normalized_boxes,
                                                         image_shape,
                                                         parallel_iterations=2)

    expected_boxes = np.array([[[0, 0, 4, 4]],
                               [[2, 2, 4, 4]]])
    with self.test_session() as sess:
      absolute_boxes = sess.run(absolute_boxes,
                                feed_dict={normalized_boxes:
                                           normalized_boxes_np})

    self.assertAllEqual(absolute_boxes, expected_boxes)


61
62
63
64
65
66
67
68
69
70
71
72
class ReduceSumTrailingDimensions(tf.test.TestCase):

  def test_reduce_sum_trailing_dimensions(self):
    input_tensor = tf.placeholder(tf.float32, shape=[None, None, None])
    reduced_tensor = ops.reduce_sum_trailing_dimensions(input_tensor, ndims=2)
    with self.test_session() as sess:
      reduced_np = sess.run(reduced_tensor,
                            feed_dict={input_tensor: np.ones((2, 2, 2),
                                                             np.float32)})
    self.assertAllClose(reduced_np, 2 * np.ones((2, 2), np.float32))


73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
class MeshgridTest(tf.test.TestCase):

  def test_meshgrid_numpy_comparison(self):
    """Tests meshgrid op with vectors, for which it should match numpy."""
    x = np.arange(4)
    y = np.arange(6)
    exp_xgrid, exp_ygrid = np.meshgrid(x, y)
    xgrid, ygrid = ops.meshgrid(x, y)
    with self.test_session() as sess:
      xgrid_output, ygrid_output = sess.run([xgrid, ygrid])
      self.assertAllEqual(xgrid_output, exp_xgrid)
      self.assertAllEqual(ygrid_output, exp_ygrid)

  def test_meshgrid_multidimensional(self):
    np.random.seed(18)
    x = np.random.rand(4, 1, 2).astype(np.float32)
    y = np.random.rand(2, 3).astype(np.float32)

    xgrid, ygrid = ops.meshgrid(x, y)

    grid_shape = list(y.shape) + list(x.shape)
    self.assertEqual(xgrid.get_shape().as_list(), grid_shape)
    self.assertEqual(ygrid.get_shape().as_list(), grid_shape)
    with self.test_session() as sess:
      xgrid_output, ygrid_output = sess.run([xgrid, ygrid])

    # Check the shape of the output grids
    self.assertEqual(xgrid_output.shape, tuple(grid_shape))
    self.assertEqual(ygrid_output.shape, tuple(grid_shape))

    # Check a few elements
    test_elements = [((3, 0, 0), (1, 2)),
                     ((2, 0, 1), (0, 0)),
                     ((0, 0, 0), (1, 1))]
    for xind, yind in test_elements:
      # These are float equality tests, but the meshgrid op should not introduce
      # rounding.
      self.assertEqual(xgrid_output[yind + xind], x[xind])
      self.assertEqual(ygrid_output[yind + xind], y[yind])


114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
class OpsTestFixedPadding(tf.test.TestCase):

  def test_3x3_kernel(self):
    tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
    padded_tensor = ops.fixed_padding(tensor, 3)
    with self.test_session() as sess:
      padded_tensor_out = sess.run(padded_tensor)
    self.assertEqual((1, 4, 4, 1), padded_tensor_out.shape)

  def test_5x5_kernel(self):
    tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
    padded_tensor = ops.fixed_padding(tensor, 5)
    with self.test_session() as sess:
      padded_tensor_out = sess.run(padded_tensor)
    self.assertEqual((1, 6, 6, 1), padded_tensor_out.shape)

  def test_3x3_atrous_kernel(self):
    tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
    padded_tensor = ops.fixed_padding(tensor, 3, 2)
    with self.test_session() as sess:
      padded_tensor_out = sess.run(padded_tensor)
    self.assertEqual((1, 6, 6, 1), padded_tensor_out.shape)


138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
class OpsTestPadToMultiple(tf.test.TestCase):

  def test_zero_padding(self):
    tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
    padded_tensor = ops.pad_to_multiple(tensor, 1)
    with self.test_session() as sess:
      padded_tensor_out = sess.run(padded_tensor)
    self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape)

  def test_no_padding(self):
    tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
    padded_tensor = ops.pad_to_multiple(tensor, 2)
    with self.test_session() as sess:
      padded_tensor_out = sess.run(padded_tensor)
    self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape)

154
155
156
157
158
159
160
  def test_non_square_padding(self):
    tensor = tf.constant([[[[0.], [0.]]]])
    padded_tensor = ops.pad_to_multiple(tensor, 2)
    with self.test_session() as sess:
      padded_tensor_out = sess.run(padded_tensor)
    self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape)

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
  def test_padding(self):
    tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
    padded_tensor = ops.pad_to_multiple(tensor, 4)
    with self.test_session() as sess:
      padded_tensor_out = sess.run(padded_tensor)
    self.assertEqual((1, 4, 4, 1), padded_tensor_out.shape)


class OpsTestPaddedOneHotEncoding(tf.test.TestCase):

  def test_correct_one_hot_tensor_with_no_pad(self):
    indices = tf.constant([1, 2, 3, 5])
    one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=0)
    expected_tensor = np.array([[0, 1, 0, 0, 0, 0],
                                [0, 0, 1, 0, 0, 0],
                                [0, 0, 0, 1, 0, 0],
                                [0, 0, 0, 0, 0, 1]], np.float32)
    with self.test_session() as sess:
      out_one_hot_tensor = sess.run(one_hot_tensor)
      self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10,
                          atol=1e-10)

  def test_correct_one_hot_tensor_with_pad_one(self):
    indices = tf.constant([1, 2, 3, 5])
    one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=1)
    expected_tensor = np.array([[0, 0, 1, 0, 0, 0, 0],
                                [0, 0, 0, 1, 0, 0, 0],
                                [0, 0, 0, 0, 1, 0, 0],
                                [0, 0, 0, 0, 0, 0, 1]], np.float32)
    with self.test_session() as sess:
      out_one_hot_tensor = sess.run(one_hot_tensor)
      self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10,
                          atol=1e-10)

  def test_correct_one_hot_tensor_with_pad_three(self):
    indices = tf.constant([1, 2, 3, 5])
    one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=3)
    expected_tensor = np.array([[0, 0, 0, 0, 1, 0, 0, 0, 0],
                                [0, 0, 0, 0, 0, 1, 0, 0, 0],
                                [0, 0, 0, 0, 0, 0, 1, 0, 0],
                                [0, 0, 0, 0, 0, 0, 0, 0, 1]], np.float32)
    with self.test_session() as sess:
      out_one_hot_tensor = sess.run(one_hot_tensor)
      self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10,
                          atol=1e-10)

  def test_correct_padded_one_hot_tensor_with_empty_indices(self):
    depth = 6
    pad = 2
    indices = tf.constant([])
    one_hot_tensor = ops.padded_one_hot_encoding(
        indices, depth=depth, left_pad=pad)
    expected_tensor = np.zeros((0, depth + pad))
    with self.test_session() as sess:
      out_one_hot_tensor = sess.run(one_hot_tensor)
      self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10,
                          atol=1e-10)

  def test_return_none_on_zero_depth(self):
    indices = tf.constant([1, 2, 3, 4, 5])
    one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=0, left_pad=2)
    self.assertEqual(one_hot_tensor, None)

  def test_raise_value_error_on_rank_two_input(self):
    indices = tf.constant(1.0, shape=(2, 3))
    with self.assertRaises(ValueError):
      ops.padded_one_hot_encoding(indices, depth=6, left_pad=2)

  def test_raise_value_error_on_negative_pad(self):
    indices = tf.constant(1.0, shape=(2, 3))
    with self.assertRaises(ValueError):
      ops.padded_one_hot_encoding(indices, depth=6, left_pad=-1)

  def test_raise_value_error_on_float_pad(self):
    indices = tf.constant(1.0, shape=(2, 3))
    with self.assertRaises(ValueError):
      ops.padded_one_hot_encoding(indices, depth=6, left_pad=0.1)

  def test_raise_value_error_on_float_depth(self):
    indices = tf.constant(1.0, shape=(2, 3))
    with self.assertRaises(ValueError):
      ops.padded_one_hot_encoding(indices, depth=0.1, left_pad=2)


class OpsDenseToSparseBoxesTest(tf.test.TestCase):

  def test_return_all_boxes_when_all_input_boxes_are_valid(self):
    num_classes = 4
    num_valid_boxes = 3
    code_size = 4
    dense_location_placeholder = tf.placeholder(tf.float32,
                                                shape=(num_valid_boxes,
                                                       code_size))
    dense_num_boxes_placeholder = tf.placeholder(tf.int32, shape=(num_classes))
    box_locations, box_classes = ops.dense_to_sparse_boxes(
        dense_location_placeholder, dense_num_boxes_placeholder, num_classes)
    feed_dict = {dense_location_placeholder: np.random.uniform(
        size=[num_valid_boxes, code_size]),
                 dense_num_boxes_placeholder: np.array([1, 0, 0, 2],
                                                       dtype=np.int32)}

    expected_box_locations = feed_dict[dense_location_placeholder]
    expected_box_classses = np.array([0, 3, 3])
    with self.test_session() as sess:
      box_locations, box_classes = sess.run([box_locations, box_classes],
                                            feed_dict=feed_dict)

    self.assertAllClose(box_locations, expected_box_locations, rtol=1e-6,
                        atol=1e-6)
    self.assertAllEqual(box_classes, expected_box_classses)

  def test_return_only_valid_boxes_when_input_contains_invalid_boxes(self):
    num_classes = 4
    num_valid_boxes = 3
    num_boxes = 10
    code_size = 4

    dense_location_placeholder = tf.placeholder(tf.float32, shape=(num_boxes,
                                                                   code_size))
    dense_num_boxes_placeholder = tf.placeholder(tf.int32, shape=(num_classes))
    box_locations, box_classes = ops.dense_to_sparse_boxes(
        dense_location_placeholder, dense_num_boxes_placeholder, num_classes)
    feed_dict = {dense_location_placeholder: np.random.uniform(
        size=[num_boxes, code_size]),
                 dense_num_boxes_placeholder: np.array([1, 0, 0, 2],
                                                       dtype=np.int32)}

    expected_box_locations = (feed_dict[dense_location_placeholder]
                              [:num_valid_boxes])
    expected_box_classses = np.array([0, 3, 3])
    with self.test_session() as sess:
      box_locations, box_classes = sess.run([box_locations, box_classes],
                                            feed_dict=feed_dict)

    self.assertAllClose(box_locations, expected_box_locations, rtol=1e-6,
                        atol=1e-6)
    self.assertAllEqual(box_classes, expected_box_classses)


class OpsTestIndicesToDenseVector(tf.test.TestCase):

  def test_indices_to_dense_vector(self):
    size = 10000
    num_indices = np.random.randint(size)
    rand_indices = np.random.permutation(np.arange(size))[0:num_indices]

    expected_output = np.zeros(size, dtype=np.float32)
    expected_output[rand_indices] = 1.

    tf_rand_indices = tf.constant(rand_indices)
    indicator = ops.indices_to_dense_vector(tf_rand_indices, size)

    with self.test_session() as sess:
      output = sess.run(indicator)
      self.assertAllEqual(output, expected_output)
      self.assertEqual(output.dtype, expected_output.dtype)

  def test_indices_to_dense_vector_size_at_inference(self):
    size = 5000
    num_indices = 250
    all_indices = np.arange(size)
    rand_indices = np.random.permutation(all_indices)[0:num_indices]

    expected_output = np.zeros(size, dtype=np.float32)
    expected_output[rand_indices] = 1.

    tf_all_indices = tf.placeholder(tf.int32)
    tf_rand_indices = tf.constant(rand_indices)
    indicator = ops.indices_to_dense_vector(tf_rand_indices,
                                            tf.shape(tf_all_indices)[0])
    feed_dict = {tf_all_indices: all_indices}

    with self.test_session() as sess:
      output = sess.run(indicator, feed_dict=feed_dict)
      self.assertAllEqual(output, expected_output)
      self.assertEqual(output.dtype, expected_output.dtype)

  def test_indices_to_dense_vector_int(self):
    size = 500
    num_indices = 25
    rand_indices = np.random.permutation(np.arange(size))[0:num_indices]

    expected_output = np.zeros(size, dtype=np.int64)
    expected_output[rand_indices] = 1

    tf_rand_indices = tf.constant(rand_indices)
    indicator = ops.indices_to_dense_vector(
        tf_rand_indices, size, 1, dtype=tf.int64)

    with self.test_session() as sess:
      output = sess.run(indicator)
      self.assertAllEqual(output, expected_output)
      self.assertEqual(output.dtype, expected_output.dtype)

  def test_indices_to_dense_vector_custom_values(self):
    size = 100
    num_indices = 10
    rand_indices = np.random.permutation(np.arange(size))[0:num_indices]
    indices_value = np.random.rand(1)
    default_value = np.random.rand(1)

    expected_output = np.float32(np.ones(size) * default_value)
    expected_output[rand_indices] = indices_value

    tf_rand_indices = tf.constant(rand_indices)
    indicator = ops.indices_to_dense_vector(
        tf_rand_indices,
        size,
        indices_value=indices_value,
        default_value=default_value)

    with self.test_session() as sess:
      output = sess.run(indicator)
      self.assertAllClose(output, expected_output)
      self.assertEqual(output.dtype, expected_output.dtype)

  def test_indices_to_dense_vector_all_indices_as_input(self):
    size = 500
    num_indices = 500
    rand_indices = np.random.permutation(np.arange(size))[0:num_indices]

    expected_output = np.ones(size, dtype=np.float32)

    tf_rand_indices = tf.constant(rand_indices)
    indicator = ops.indices_to_dense_vector(tf_rand_indices, size)

    with self.test_session() as sess:
      output = sess.run(indicator)
      self.assertAllEqual(output, expected_output)
      self.assertEqual(output.dtype, expected_output.dtype)

  def test_indices_to_dense_vector_empty_indices_as_input(self):
    size = 500
    rand_indices = []

    expected_output = np.zeros(size, dtype=np.float32)

    tf_rand_indices = tf.constant(rand_indices)
    indicator = ops.indices_to_dense_vector(tf_rand_indices, size)

    with self.test_session() as sess:
      output = sess.run(indicator)
      self.assertAllEqual(output, expected_output)
      self.assertEqual(output.dtype, expected_output.dtype)


class GroundtruthFilterTest(tf.test.TestCase):

  def test_filter_groundtruth(self):
    input_image = tf.placeholder(tf.float32, shape=(None, None, 3))
    input_boxes = tf.placeholder(tf.float32, shape=(None, 4))
    input_classes = tf.placeholder(tf.int32, shape=(None,))
    input_is_crowd = tf.placeholder(tf.bool, shape=(None,))
    input_area = tf.placeholder(tf.float32, shape=(None,))
    input_difficult = tf.placeholder(tf.float32, shape=(None,))
    input_label_types = tf.placeholder(tf.string, shape=(None,))
417
    input_confidences = tf.placeholder(tf.float32, shape=(None,))
418
419
420
421
422
423
424
425
    valid_indices = tf.placeholder(tf.int32, shape=(None,))
    input_tensors = {
        fields.InputDataFields.image: input_image,
        fields.InputDataFields.groundtruth_boxes: input_boxes,
        fields.InputDataFields.groundtruth_classes: input_classes,
        fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
        fields.InputDataFields.groundtruth_area: input_area,
        fields.InputDataFields.groundtruth_difficult: input_difficult,
426
427
        fields.InputDataFields.groundtruth_label_types: input_label_types,
        fields.InputDataFields.groundtruth_confidences: input_confidences,
428
429
430
431
432
433
434
435
    }
    output_tensors = ops.retain_groundtruth(input_tensors, valid_indices)

    image_tensor = np.random.rand(224, 224, 3)
    feed_dict = {
        input_image: image_tensor,
        input_boxes:
        np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], dtype=np.float),
436
437
438
439
        input_classes: np.array([1, 2], dtype=np.int32),
        input_is_crowd: np.array([False, True], dtype=np.bool),
        input_area: np.array([32, 48], dtype=np.float32),
        input_difficult: np.array([True, False], dtype=np.bool),
440
441
        input_label_types:
        np.array(['APPROPRIATE', 'INCORRECT'], dtype=np.string_),
442
443
        input_confidences: np.array([0.99, 0.5], dtype=np.float32),
        valid_indices: np.array([0], dtype=np.int32),
444
445
    }
    expected_tensors = {
446
447
448
449
450
451
        fields.InputDataFields.image: image_tensor,
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [1],
        fields.InputDataFields.groundtruth_is_crowd: [False],
        fields.InputDataFields.groundtruth_area: [32],
        fields.InputDataFields.groundtruth_difficult: [True],
pkulzc's avatar
pkulzc committed
452
        fields.InputDataFields.groundtruth_label_types: [six.b('APPROPRIATE')],
453
        fields.InputDataFields.groundtruth_confidences: [0.99],
454
455
456
457
458
    }
    with self.test_session() as sess:
      output_tensors = sess.run(output_tensors, feed_dict=feed_dict)
      for key in [fields.InputDataFields.image,
                  fields.InputDataFields.groundtruth_boxes,
459
460
                  fields.InputDataFields.groundtruth_area,
                  fields.InputDataFields.groundtruth_confidences]:
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
        self.assertAllClose(expected_tensors[key], output_tensors[key])
      for key in [fields.InputDataFields.groundtruth_classes,
                  fields.InputDataFields.groundtruth_is_crowd,
                  fields.InputDataFields.groundtruth_label_types]:
        self.assertAllEqual(expected_tensors[key], output_tensors[key])

  def test_filter_with_missing_fields(self):
    input_boxes = tf.placeholder(tf.float32, shape=(None, 4))
    input_classes = tf.placeholder(tf.int32, shape=(None,))
    input_tensors = {
        fields.InputDataFields.groundtruth_boxes: input_boxes,
        fields.InputDataFields.groundtruth_classes: input_classes
    }
    valid_indices = tf.placeholder(tf.int32, shape=(None,))

    feed_dict = {
        input_boxes:
        np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], dtype=np.float),
        input_classes:
        np.array([1, 2], dtype=np.int32),
        valid_indices:
        np.array([0], dtype=np.int32)
    }
    expected_tensors = {
        fields.InputDataFields.groundtruth_boxes:
        [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes:
        [1]
    }

    output_tensors = ops.retain_groundtruth(input_tensors, valid_indices)
    with self.test_session() as sess:
      output_tensors = sess.run(output_tensors, feed_dict=feed_dict)
      for key in [fields.InputDataFields.groundtruth_boxes]:
        self.assertAllClose(expected_tensors[key], output_tensors[key])
      for key in [fields.InputDataFields.groundtruth_classes]:
        self.assertAllEqual(expected_tensors[key], output_tensors[key])

  def test_filter_with_empty_fields(self):
    input_boxes = tf.placeholder(tf.float32, shape=(None, 4))
    input_classes = tf.placeholder(tf.int32, shape=(None,))
    input_is_crowd = tf.placeholder(tf.bool, shape=(None,))
    input_area = tf.placeholder(tf.float32, shape=(None,))
    input_difficult = tf.placeholder(tf.float32, shape=(None,))
505
    input_confidences = tf.placeholder(tf.float32, shape=(None,))
506
507
508
509
510
511
    valid_indices = tf.placeholder(tf.int32, shape=(None,))
    input_tensors = {
        fields.InputDataFields.groundtruth_boxes: input_boxes,
        fields.InputDataFields.groundtruth_classes: input_classes,
        fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
        fields.InputDataFields.groundtruth_area: input_area,
512
513
        fields.InputDataFields.groundtruth_difficult: input_difficult,
        fields.InputDataFields.groundtruth_confidences: input_confidences,
514
515
516
517
518
519
    }
    output_tensors = ops.retain_groundtruth(input_tensors, valid_indices)

    feed_dict = {
        input_boxes:
        np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], dtype=np.float),
520
521
522
523
524
525
        input_classes: np.array([1, 2], dtype=np.int32),
        input_is_crowd: np.array([False, True], dtype=np.bool),
        input_area: np.array([], dtype=np.float32),
        input_difficult: np.array([], dtype=np.float32),
        input_confidences: np.array([0.99, 0.5], dtype=np.float32),
        valid_indices: np.array([0], dtype=np.int32)
526
527
    }
    expected_tensors = {
528
529
530
531
532
533
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [1],
        fields.InputDataFields.groundtruth_is_crowd: [False],
        fields.InputDataFields.groundtruth_area: [],
        fields.InputDataFields.groundtruth_difficult: [],
        fields.InputDataFields.groundtruth_confidences: [0.99],
534
535
536
537
    }
    with self.test_session() as sess:
      output_tensors = sess.run(output_tensors, feed_dict=feed_dict)
      for key in [fields.InputDataFields.groundtruth_boxes,
538
539
                  fields.InputDataFields.groundtruth_area,
                  fields.InputDataFields.groundtruth_confidences]:
540
541
542
543
544
545
546
547
548
549
550
        self.assertAllClose(expected_tensors[key], output_tensors[key])
      for key in [fields.InputDataFields.groundtruth_classes,
                  fields.InputDataFields.groundtruth_is_crowd]:
        self.assertAllEqual(expected_tensors[key], output_tensors[key])

  def test_filter_with_empty_groundtruth_boxes(self):
    input_boxes = tf.placeholder(tf.float32, shape=(None, 4))
    input_classes = tf.placeholder(tf.int32, shape=(None,))
    input_is_crowd = tf.placeholder(tf.bool, shape=(None,))
    input_area = tf.placeholder(tf.float32, shape=(None,))
    input_difficult = tf.placeholder(tf.float32, shape=(None,))
551
    input_confidences = tf.placeholder(tf.float32, shape=(None,))
552
553
554
555
556
557
    valid_indices = tf.placeholder(tf.int32, shape=(None,))
    input_tensors = {
        fields.InputDataFields.groundtruth_boxes: input_boxes,
        fields.InputDataFields.groundtruth_classes: input_classes,
        fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
        fields.InputDataFields.groundtruth_area: input_area,
558
559
        fields.InputDataFields.groundtruth_difficult: input_difficult,
        fields.InputDataFields.groundtruth_confidences: input_confidences,
560
561
562
563
    }
    output_tensors = ops.retain_groundtruth(input_tensors, valid_indices)

    feed_dict = {
564
565
566
567
568
569
570
        input_boxes: np.array([], dtype=np.float).reshape(0, 4),
        input_classes: np.array([], dtype=np.int32),
        input_is_crowd: np.array([], dtype=np.bool),
        input_area: np.array([], dtype=np.float32),
        input_difficult: np.array([], dtype=np.float32),
        input_confidences: np.array([], dtype=np.float32),
        valid_indices: np.array([], dtype=np.int32),
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
    }
    with self.test_session() as sess:
      output_tensors = sess.run(output_tensors, feed_dict=feed_dict)
      for key in input_tensors:
        if key == fields.InputDataFields.groundtruth_boxes:
          self.assertAllEqual([0, 4], output_tensors[key].shape)
        else:
          self.assertAllEqual([0], output_tensors[key].shape)


class RetainGroundTruthWithPositiveClasses(tf.test.TestCase):

  def test_filter_groundtruth_with_positive_classes(self):
    input_image = tf.placeholder(tf.float32, shape=(None, None, 3))
    input_boxes = tf.placeholder(tf.float32, shape=(None, 4))
    input_classes = tf.placeholder(tf.int32, shape=(None,))
    input_is_crowd = tf.placeholder(tf.bool, shape=(None,))
    input_area = tf.placeholder(tf.float32, shape=(None,))
    input_difficult = tf.placeholder(tf.float32, shape=(None,))
    input_label_types = tf.placeholder(tf.string, shape=(None,))
591
    input_confidences = tf.placeholder(tf.float32, shape=(None,))
592
593
594
595
596
597
598
599
    valid_indices = tf.placeholder(tf.int32, shape=(None,))
    input_tensors = {
        fields.InputDataFields.image: input_image,
        fields.InputDataFields.groundtruth_boxes: input_boxes,
        fields.InputDataFields.groundtruth_classes: input_classes,
        fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
        fields.InputDataFields.groundtruth_area: input_area,
        fields.InputDataFields.groundtruth_difficult: input_difficult,
600
601
        fields.InputDataFields.groundtruth_label_types: input_label_types,
        fields.InputDataFields.groundtruth_confidences: input_confidences,
602
603
604
605
606
607
608
609
    }
    output_tensors = ops.retain_groundtruth_with_positive_classes(input_tensors)

    image_tensor = np.random.rand(224, 224, 3)
    feed_dict = {
        input_image: image_tensor,
        input_boxes:
        np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], dtype=np.float),
610
611
612
613
        input_classes: np.array([1, 0], dtype=np.int32),
        input_is_crowd: np.array([False, True], dtype=np.bool),
        input_area: np.array([32, 48], dtype=np.float32),
        input_difficult: np.array([True, False], dtype=np.bool),
614
615
        input_label_types:
        np.array(['APPROPRIATE', 'INCORRECT'], dtype=np.string_),
616
617
        input_confidences: np.array([0.99, 0.5], dtype=np.float32),
        valid_indices: np.array([0], dtype=np.int32),
618
619
    }
    expected_tensors = {
620
621
622
623
624
625
        fields.InputDataFields.image: image_tensor,
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [1],
        fields.InputDataFields.groundtruth_is_crowd: [False],
        fields.InputDataFields.groundtruth_area: [32],
        fields.InputDataFields.groundtruth_difficult: [True],
pkulzc's avatar
pkulzc committed
626
        fields.InputDataFields.groundtruth_label_types: [six.b('APPROPRIATE')],
627
        fields.InputDataFields.groundtruth_confidences: [0.99],
628
629
630
631
632
    }
    with self.test_session() as sess:
      output_tensors = sess.run(output_tensors, feed_dict=feed_dict)
      for key in [fields.InputDataFields.image,
                  fields.InputDataFields.groundtruth_boxes,
633
634
                  fields.InputDataFields.groundtruth_area,
                  fields.InputDataFields.groundtruth_confidences]:
635
636
637
638
639
640
641
        self.assertAllClose(expected_tensors[key], output_tensors[key])
      for key in [fields.InputDataFields.groundtruth_classes,
                  fields.InputDataFields.groundtruth_is_crowd,
                  fields.InputDataFields.groundtruth_label_types]:
        self.assertAllEqual(expected_tensors[key], output_tensors[key])


642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
class ReplaceNaNGroundtruthLabelScoresWithOnes(tf.test.TestCase):

  def test_replace_nan_groundtruth_label_scores_with_ones(self):
    label_scores = tf.constant([np.nan, 1.0, np.nan])
    output_tensor = ops.replace_nan_groundtruth_label_scores_with_ones(
        label_scores)
    expected_tensor = [1.0, 1.0, 1.0]
    with self.test_session():
      output_tensor = output_tensor.eval()
      self.assertAllClose(expected_tensor, output_tensor)

  def test_input_equals_output_when_no_nans(self):
    input_label_scores = [0.5, 1.0, 1.0]
    label_scores_tensor = tf.constant(input_label_scores)
    output_label_scores = ops.replace_nan_groundtruth_label_scores_with_ones(
        label_scores_tensor)
    with self.test_session():
      output_label_scores = output_label_scores.eval()
      self.assertAllClose(input_label_scores, output_label_scores)


class GroundtruthFilterWithCrowdBoxesTest(tf.test.TestCase):

  def test_filter_groundtruth_with_crowd_boxes(self):
    input_tensors = {
        fields.InputDataFields.groundtruth_boxes:
        [[0.1, 0.2, 0.6, 0.8], [0.2, 0.4, 0.1, 0.8]],
669
670
671
672
        fields.InputDataFields.groundtruth_classes: [1, 2],
        fields.InputDataFields.groundtruth_is_crowd: [True, False],
        fields.InputDataFields.groundtruth_area: [100.0, 238.7],
        fields.InputDataFields.groundtruth_confidences: [0.5, 0.99],
673
674
675
    }

    expected_tensors = {
676
677
678
679
680
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [2],
        fields.InputDataFields.groundtruth_is_crowd: [False],
        fields.InputDataFields.groundtruth_area: [238.7],
        fields.InputDataFields.groundtruth_confidences: [0.99],
681
682
683
684
685
686
687
    }

    output_tensors = ops.filter_groundtruth_with_crowd_boxes(
        input_tensors)
    with self.test_session() as sess:
      output_tensors = sess.run(output_tensors)
      for key in [fields.InputDataFields.groundtruth_boxes,
688
689
                  fields.InputDataFields.groundtruth_area,
                  fields.InputDataFields.groundtruth_confidences]:
690
691
692
693
694
695
        self.assertAllClose(expected_tensors[key], output_tensors[key])
      for key in [fields.InputDataFields.groundtruth_classes,
                  fields.InputDataFields.groundtruth_is_crowd]:
        self.assertAllEqual(expected_tensors[key], output_tensors[key])


696
697
698
699
700
701
class GroundtruthFilterWithNanBoxTest(tf.test.TestCase):

  def test_filter_groundtruth_with_nan_box_coordinates(self):
    input_tensors = {
        fields.InputDataFields.groundtruth_boxes:
        [[np.nan, np.nan, np.nan, np.nan], [0.2, 0.4, 0.1, 0.8]],
702
703
704
705
        fields.InputDataFields.groundtruth_classes: [1, 2],
        fields.InputDataFields.groundtruth_is_crowd: [False, True],
        fields.InputDataFields.groundtruth_area: [100.0, 238.7],
        fields.InputDataFields.groundtruth_confidences: [0.5, 0.99],
706
707
708
    }

    expected_tensors = {
709
710
711
712
713
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [2],
        fields.InputDataFields.groundtruth_is_crowd: [True],
        fields.InputDataFields.groundtruth_area: [238.7],
        fields.InputDataFields.groundtruth_confidences: [0.99],
714
715
716
717
718
719
720
    }

    output_tensors = ops.filter_groundtruth_with_nan_box_coordinates(
        input_tensors)
    with self.test_session() as sess:
      output_tensors = sess.run(output_tensors)
      for key in [fields.InputDataFields.groundtruth_boxes,
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
                  fields.InputDataFields.groundtruth_area,
                  fields.InputDataFields.groundtruth_confidences]:
        self.assertAllClose(expected_tensors[key], output_tensors[key])
      for key in [fields.InputDataFields.groundtruth_classes,
                  fields.InputDataFields.groundtruth_is_crowd]:
        self.assertAllEqual(expected_tensors[key], output_tensors[key])


class GroundtruthFilterWithUnrecognizedClassesTest(tf.test.TestCase):

  def test_filter_unrecognized_classes(self):
    input_tensors = {
        fields.InputDataFields.groundtruth_boxes:
        [[.3, .3, .5, .7], [0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [-1, 2],
        fields.InputDataFields.groundtruth_is_crowd: [False, True],
        fields.InputDataFields.groundtruth_area: [100.0, 238.7],
        fields.InputDataFields.groundtruth_confidences: [0.5, 0.99],
    }

    expected_tensors = {
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [2],
        fields.InputDataFields.groundtruth_is_crowd: [True],
        fields.InputDataFields.groundtruth_area: [238.7],
        fields.InputDataFields.groundtruth_confidences: [0.99],
    }

    output_tensors = ops.filter_unrecognized_classes(input_tensors)
    with self.test_session() as sess:
      output_tensors = sess.run(output_tensors)
      for key in [fields.InputDataFields.groundtruth_boxes,
                  fields.InputDataFields.groundtruth_area,
                  fields.InputDataFields.groundtruth_confidences]:
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
        self.assertAllClose(expected_tensors[key], output_tensors[key])
      for key in [fields.InputDataFields.groundtruth_classes,
                  fields.InputDataFields.groundtruth_is_crowd]:
        self.assertAllEqual(expected_tensors[key], output_tensors[key])


class OpsTestNormalizeToTarget(tf.test.TestCase):

  def test_create_normalize_to_target(self):
    inputs = tf.random_uniform([5, 10, 12, 3])
    target_norm_value = 4.0
    dim = 3
    with self.test_session():
      output = ops.normalize_to_target(inputs, target_norm_value, dim)
      self.assertEqual(output.op.name, 'NormalizeToTarget/mul')
770
      var_name = contrib_framework.get_variables()[0].name
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
      self.assertEqual(var_name, 'NormalizeToTarget/weights:0')

  def test_invalid_dim(self):
    inputs = tf.random_uniform([5, 10, 12, 3])
    target_norm_value = 4.0
    dim = 10
    with self.assertRaisesRegexp(
        ValueError,
        'dim must be non-negative but smaller than the input rank.'):
      ops.normalize_to_target(inputs, target_norm_value, dim)

  def test_invalid_target_norm_values(self):
    inputs = tf.random_uniform([5, 10, 12, 3])
    target_norm_value = [4.0, 4.0]
    dim = 3
    with self.assertRaisesRegexp(
        ValueError, 'target_norm_value must be a float or a list of floats'):
      ops.normalize_to_target(inputs, target_norm_value, dim)

  def test_correct_output_shape(self):
    inputs = tf.random_uniform([5, 10, 12, 3])
    target_norm_value = 4.0
    dim = 3
    with self.test_session():
      output = ops.normalize_to_target(inputs, target_norm_value, dim)
      self.assertEqual(output.get_shape().as_list(),
                       inputs.get_shape().as_list())

  def test_correct_initial_output_values(self):
    inputs = tf.constant([[[[3, 4], [7, 24]],
                           [[5, -12], [-1, 0]]]], tf.float32)
    target_norm_value = 10.0
    dim = 3
    expected_output = [[[[30/5.0, 40/5.0], [70/25.0, 240/25.0]],
                        [[50/13.0, -120/13.0], [-10, 0]]]]
    with self.test_session() as sess:
      normalized_inputs = ops.normalize_to_target(inputs, target_norm_value,
                                                  dim)
      sess.run(tf.global_variables_initializer())
      output = normalized_inputs.eval()
      self.assertAllClose(output, expected_output)

  def test_multiple_target_norm_values(self):
    inputs = tf.constant([[[[3, 4], [7, 24]],
                           [[5, -12], [-1, 0]]]], tf.float32)
    target_norm_value = [10.0, 20.0]
    dim = 3
    expected_output = [[[[30/5.0, 80/5.0], [70/25.0, 480/25.0]],
                        [[50/13.0, -240/13.0], [-10, 0]]]]
    with self.test_session() as sess:
      normalized_inputs = ops.normalize_to_target(inputs, target_norm_value,
                                                  dim)
      sess.run(tf.global_variables_initializer())
      output = normalized_inputs.eval()
      self.assertAllClose(output, expected_output)


class OpsTestPositionSensitiveCropRegions(tf.test.TestCase):

  def test_position_sensitive(self):
    num_spatial_bins = [3, 2]
832
    image_shape = [3, 2, 6]
833
834

    # First channel is 1's, second channel is 2's, etc.
pkulzc's avatar
pkulzc committed
835
836
    image = tf.constant(
        list(range(1, 3 * 2 + 1)) * 6, dtype=tf.float32, shape=image_shape)
837
838
839
840
841
842
843
844
845
    boxes = tf.random_uniform((2, 4))

    # The result for both boxes should be [[1, 2], [3, 4], [5, 6]]
    # before averaging.
    expected_output = np.array([3.5, 3.5]).reshape([2, 1, 1, 1])

    for crop_size_mult in range(1, 3):
      crop_size = [3 * crop_size_mult, 2 * crop_size_mult]
      ps_crop_and_pool = ops.position_sensitive_crop_regions(
846
          image, boxes, crop_size, num_spatial_bins, global_pool=True)
847
848
849
850
851
852
853

      with self.test_session() as sess:
        output = sess.run(ps_crop_and_pool)
        self.assertAllClose(output, expected_output)

  def test_position_sensitive_with_equal_channels(self):
    num_spatial_bins = [2, 2]
854
    image_shape = [3, 3, 4]
855
856
    crop_size = [2, 2]

pkulzc's avatar
pkulzc committed
857
858
    image = tf.constant(
        list(range(1, 3 * 3 + 1)), dtype=tf.float32, shape=[3, 3, 1])
859
    tiled_image = tf.tile(image, [1, 1, image_shape[2]])
860
861
862
863
864
    boxes = tf.random_uniform((3, 4))
    box_ind = tf.constant([0, 0, 0], dtype=tf.int32)

    # All channels are equal so position-sensitive crop and resize should
    # work as the usual crop and resize for just one channel.
865
866
    crop = tf.image.crop_and_resize(tf.expand_dims(image, axis=0), boxes,
                                    box_ind, crop_size)
867
    crop_and_pool = tf.reduce_mean(crop, [1, 2], keepdims=True)
868
869
870
871
872
873
874
875
876
877
878
879
880
881

    ps_crop_and_pool = ops.position_sensitive_crop_regions(
        tiled_image,
        boxes,
        crop_size,
        num_spatial_bins,
        global_pool=True)

    with self.test_session() as sess:
      expected_output, output = sess.run((crop_and_pool, ps_crop_and_pool))
      self.assertAllClose(output, expected_output)

  def test_raise_value_error_on_num_bins_less_than_one(self):
    num_spatial_bins = [1, -1]
882
    image_shape = [1, 1, 2]
883
884
885
886
887
888
889
    crop_size = [2, 2]

    image = tf.constant(1, dtype=tf.float32, shape=image_shape)
    boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)

    with self.assertRaisesRegexp(ValueError, 'num_spatial_bins should be >= 1'):
      ops.position_sensitive_crop_regions(
890
          image, boxes, crop_size, num_spatial_bins, global_pool=True)
891
892
893

  def test_raise_value_error_on_non_divisible_crop_size(self):
    num_spatial_bins = [2, 3]
894
    image_shape = [1, 1, 6]
895
896
897
898
899
900
901
902
    crop_size = [3, 2]

    image = tf.constant(1, dtype=tf.float32, shape=image_shape)
    boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)

    with self.assertRaisesRegexp(
        ValueError, 'crop_size should be divisible by num_spatial_bins'):
      ops.position_sensitive_crop_regions(
903
          image, boxes, crop_size, num_spatial_bins, global_pool=True)
904
905
906

  def test_raise_value_error_on_non_divisible_num_channels(self):
    num_spatial_bins = [2, 2]
907
    image_shape = [1, 1, 5]
908
909
910
911
912
913
914
915
    crop_size = [2, 2]

    image = tf.constant(1, dtype=tf.float32, shape=image_shape)
    boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)

    with self.assertRaisesRegexp(
        ValueError, 'Dimension size must be evenly divisible by 4 but is 5'):
      ops.position_sensitive_crop_regions(
916
          image, boxes, crop_size, num_spatial_bins, global_pool=True)
917
918
919

  def test_position_sensitive_with_global_pool_false(self):
    num_spatial_bins = [3, 2]
920
    image_shape = [3, 2, 6]
921
922
923
    num_boxes = 2

    # First channel is 1's, second channel is 2's, etc.
pkulzc's avatar
pkulzc committed
924
925
    image = tf.constant(
        list(range(1, 3 * 2 + 1)) * 6, dtype=tf.float32, shape=image_shape)
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
    boxes = tf.random_uniform((num_boxes, 4))

    expected_output = []

    # Expected output, when crop_size = [3, 2].
    expected_output.append(np.expand_dims(
        np.tile(np.array([[1, 2],
                          [3, 4],
                          [5, 6]]), (num_boxes, 1, 1)),
        axis=-1))

    # Expected output, when crop_size = [6, 4].
    expected_output.append(np.expand_dims(
        np.tile(np.array([[1, 1, 2, 2],
                          [1, 1, 2, 2],
                          [3, 3, 4, 4],
                          [3, 3, 4, 4],
                          [5, 5, 6, 6],
                          [5, 5, 6, 6]]), (num_boxes, 1, 1)),
        axis=-1))

    for crop_size_mult in range(1, 3):
      crop_size = [3 * crop_size_mult, 2 * crop_size_mult]
      ps_crop = ops.position_sensitive_crop_regions(
950
          image, boxes, crop_size, num_spatial_bins, global_pool=False)
951
952
      with self.test_session() as sess:
        output = sess.run(ps_crop)
953
      self.assertAllClose(output, expected_output[crop_size_mult - 1])
954
955
956

  def test_position_sensitive_with_global_pool_false_and_do_global_pool(self):
    num_spatial_bins = [3, 2]
957
    image_shape = [3, 2, 6]
958
959
960
    num_boxes = 2

    # First channel is 1's, second channel is 2's, etc.
pkulzc's avatar
pkulzc committed
961
962
    image = tf.constant(
        list(range(1, 3 * 2 + 1)) * 6, dtype=tf.float32, shape=image_shape)
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
    boxes = tf.random_uniform((num_boxes, 4))

    expected_output = []

    # Expected output, when crop_size = [3, 2].
    expected_output.append(np.mean(
        np.expand_dims(
            np.tile(np.array([[1, 2],
                              [3, 4],
                              [5, 6]]), (num_boxes, 1, 1)),
            axis=-1),
        axis=(1, 2), keepdims=True))

    # Expected output, when crop_size = [6, 4].
    expected_output.append(np.mean(
        np.expand_dims(
            np.tile(np.array([[1, 1, 2, 2],
                              [1, 1, 2, 2],
                              [3, 3, 4, 4],
                              [3, 3, 4, 4],
                              [5, 5, 6, 6],
                              [5, 5, 6, 6]]), (num_boxes, 1, 1)),
            axis=-1),
        axis=(1, 2), keepdims=True))

    for crop_size_mult in range(1, 3):
      crop_size = [3 * crop_size_mult, 2 * crop_size_mult]

      # Perform global_pooling after running the function with
      # global_pool=False.
      ps_crop = ops.position_sensitive_crop_regions(
994
          image, boxes, crop_size, num_spatial_bins, global_pool=False)
995
      ps_crop_and_pool = tf.reduce_mean(
996
          ps_crop, reduction_indices=(1, 2), keepdims=True)
997
998
999
1000
1001
1002
1003
1004

      with self.test_session() as sess:
        output = sess.run(ps_crop_and_pool)

      self.assertAllEqual(output, expected_output[crop_size_mult - 1])

  def test_raise_value_error_on_non_square_block_size(self):
    num_spatial_bins = [3, 2]
1005
    image_shape = [3, 2, 6]
1006
1007
1008
1009
1010
1011
1012
1013
    crop_size = [6, 2]

    image = tf.constant(1, dtype=tf.float32, shape=image_shape)
    boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)

    with self.assertRaisesRegexp(
        ValueError, 'Only support square bin crop size for now.'):
      ops.position_sensitive_crop_regions(
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
          image, boxes, crop_size, num_spatial_bins, global_pool=False)


class OpsTestBatchPositionSensitiveCropRegions(tf.test.TestCase):

  def test_position_sensitive_with_single_bin(self):
    num_spatial_bins = [1, 1]
    image_shape = [2, 3, 3, 4]
    crop_size = [2, 2]

    image = tf.random_uniform(image_shape)
    boxes = tf.random_uniform((2, 3, 4))
    box_ind = tf.constant([0, 0, 0, 1, 1, 1], dtype=tf.int32)

    # When a single bin is used, position-sensitive crop and pool should be
    # the same as non-position sensitive crop and pool.
    crop = tf.image.crop_and_resize(image, tf.reshape(boxes, [-1, 4]), box_ind,
                                    crop_size)
    crop_and_pool = tf.reduce_mean(crop, [1, 2], keepdims=True)
    crop_and_pool = tf.reshape(crop_and_pool, [2, 3, 1, 1, 4])

    ps_crop_and_pool = ops.batch_position_sensitive_crop_regions(
        image, boxes, crop_size, num_spatial_bins, global_pool=True)

    with self.test_session() as sess:
      expected_output, output = sess.run((crop_and_pool, ps_crop_and_pool))
      self.assertAllClose(output, expected_output)

  def test_position_sensitive_with_global_pool_false_and_known_boxes(self):
    num_spatial_bins = [2, 2]
    image_shape = [2, 2, 2, 4]
    crop_size = [2, 2]

pkulzc's avatar
pkulzc committed
1047
1048
    images = tf.constant(
        list(range(1, 2 * 2 * 4 + 1)) * 2, dtype=tf.float32, shape=image_shape)
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

    # First box contains whole image, and second box contains only first row.
    boxes = tf.constant(np.array([[[0., 0., 1., 1.]],
                                  [[0., 0., 0.5, 1.]]]), dtype=tf.float32)
    # box_ind = tf.constant([0, 1], dtype=tf.int32)

    expected_output = []

    # Expected output, when the box containing whole image.
    expected_output.append(
        np.reshape(np.array([[4, 7],
                             [10, 13]]),
                   (1, 2, 2, 1))
    )

    # Expected output, when the box containing only first row.
    expected_output.append(
        np.reshape(np.array([[3, 6],
                             [7, 10]]),
                   (1, 2, 2, 1))
    )
    expected_output = np.stack(expected_output, axis=0)

    ps_crop = ops.batch_position_sensitive_crop_regions(
        images, boxes, crop_size, num_spatial_bins, global_pool=False)

    with self.test_session() as sess:
      output = sess.run(ps_crop)
      self.assertAllEqual(output, expected_output)

  def test_position_sensitive_with_global_pool_false_and_single_bin(self):
    num_spatial_bins = [1, 1]
    image_shape = [2, 3, 3, 4]
    crop_size = [1, 1]

    images = tf.random_uniform(image_shape)
    boxes = tf.random_uniform((2, 3, 4))
    # box_ind = tf.constant([0, 0, 0, 1, 1, 1], dtype=tf.int32)

    # Since single_bin is used and crop_size = [1, 1] (i.e., no crop resize),
    # the outputs are the same whatever the global_pool value is.
    ps_crop_and_pool = ops.batch_position_sensitive_crop_regions(
        images, boxes, crop_size, num_spatial_bins, global_pool=True)
    ps_crop = ops.batch_position_sensitive_crop_regions(
        images, boxes, crop_size, num_spatial_bins, global_pool=False)

    with self.test_session() as sess:
      pooled_output, unpooled_output = sess.run((ps_crop_and_pool, ps_crop))
      self.assertAllClose(pooled_output, unpooled_output)
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116


class ReframeBoxMasksToImageMasksTest(tf.test.TestCase):

  def testZeroImageOnEmptyMask(self):
    box_masks = tf.constant([[[0, 0],
                              [0, 0]]], dtype=tf.float32)
    boxes = tf.constant([[0.0, 0.0, 1.0, 1.0]], dtype=tf.float32)
    image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes,
                                                       image_height=4,
                                                       image_width=4)
    np_expected_image_masks = np.array([[[0, 0, 0, 0],
                                         [0, 0, 0, 0],
                                         [0, 0, 0, 0],
                                         [0, 0, 0, 0]]], dtype=np.float32)
    with self.test_session() as sess:
      np_image_masks = sess.run(image_masks)
      self.assertAllClose(np_image_masks, np_expected_image_masks)

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
  def testZeroBoxMasks(self):
    box_masks = tf.zeros([0, 3, 3], dtype=tf.float32)
    boxes = tf.zeros([0, 4], dtype=tf.float32)
    image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes,
                                                       image_height=4,
                                                       image_width=4)
    with self.test_session() as sess:
      np_image_masks = sess.run(image_masks)
      self.assertAllEqual(np_image_masks.shape, np.array([0, 4, 4]))

1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
  def testMaskIsCenteredInImageWhenBoxIsCentered(self):
    box_masks = tf.constant([[[1, 1],
                              [1, 1]]], dtype=tf.float32)
    boxes = tf.constant([[0.25, 0.25, 0.75, 0.75]], dtype=tf.float32)
    image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes,
                                                       image_height=4,
                                                       image_width=4)
    np_expected_image_masks = np.array([[[0, 0, 0, 0],
                                         [0, 1, 1, 0],
                                         [0, 1, 1, 0],
                                         [0, 0, 0, 0]]], dtype=np.float32)
    with self.test_session() as sess:
      np_image_masks = sess.run(image_masks)
      self.assertAllClose(np_image_masks, np_expected_image_masks)

  def testMaskOffCenterRemainsOffCenterInImage(self):
    box_masks = tf.constant([[[1, 0],
                              [0, 1]]], dtype=tf.float32)
    boxes = tf.constant([[0.25, 0.5, 0.75, 1.0]], dtype=tf.float32)
    image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes,
                                                       image_height=4,
                                                       image_width=4)
    np_expected_image_masks = np.array([[[0, 0, 0, 0],
                                         [0, 0, 0.6111111, 0.16666669],
                                         [0, 0, 0.3888889, 0.83333337],
                                         [0, 0, 0, 0]]], dtype=np.float32)
    with self.test_session() as sess:
      np_image_masks = sess.run(image_masks)
      self.assertAllClose(np_image_masks, np_expected_image_masks)


1158
1159
1160
1161
1162
1163
1164
1165
class MergeBoxesWithMultipleLabelsTest(tf.test.TestCase):

  def testMergeBoxesWithMultipleLabels(self):
    boxes = tf.constant(
        [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75],
         [0.25, 0.25, 0.75, 0.75]],
        dtype=tf.float32)
    class_indices = tf.constant([0, 4, 2], dtype=tf.int32)
1166
    class_confidences = tf.constant([0.8, 0.2, 0.1], dtype=tf.float32)
1167
    num_classes = 5
1168
1169
1170
    merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
        ops.merge_boxes_with_multiple_labels(
            boxes, class_indices, class_confidences, num_classes))
1171
1172
1173
1174
    expected_merged_boxes = np.array(
        [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype=np.float32)
    expected_merged_classes = np.array(
        [[1, 0, 1, 0, 0], [0, 0, 0, 0, 1]], dtype=np.int32)
1175
1176
    expected_merged_confidences = np.array(
        [[0.8, 0, 0.1, 0, 0], [0, 0, 0, 0, 0.2]], dtype=np.float32)
1177
1178
    expected_merged_box_indices = np.array([0, 1], dtype=np.int32)
    with self.test_session() as sess:
1179
1180
1181
1182
      (np_merged_boxes, np_merged_classes, np_merged_confidences,
       np_merged_box_indices) = sess.run(
           [merged_boxes, merged_classes, merged_confidences,
            merged_box_indices])
1183
1184
      self.assertAllClose(np_merged_boxes, expected_merged_boxes)
      self.assertAllClose(np_merged_classes, expected_merged_classes)
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
      self.assertAllClose(np_merged_confidences, expected_merged_confidences)
      self.assertAllClose(np_merged_box_indices, expected_merged_box_indices)

  def testMergeBoxesWithMultipleLabelsCornerCase(self):
    boxes = tf.constant(
        [[0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1],
         [1, 1, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [0, 0, 1, 1]],
        dtype=tf.float32)
    class_indices = tf.constant([0, 1, 2, 3, 2, 1, 0, 3], dtype=tf.int32)
    class_confidences = tf.constant([0.1, 0.9, 0.2, 0.8, 0.3, 0.7, 0.4, 0.6],
                                    dtype=tf.float32)
    num_classes = 4
    merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
        ops.merge_boxes_with_multiple_labels(
            boxes, class_indices, class_confidences, num_classes))
    expected_merged_boxes = np.array(
        [[0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]],
        dtype=np.float32)
    expected_merged_classes = np.array(
        [[1, 0, 0, 1], [1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]],
        dtype=np.int32)
    expected_merged_confidences = np.array(
        [[0.1, 0, 0, 0.6], [0.4, 0.9, 0, 0],
         [0, 0.7, 0.2, 0], [0, 0, 0.3, 0.8]], dtype=np.float32)
    expected_merged_box_indices = np.array([0, 1, 2, 3], dtype=np.int32)
    with self.test_session() as sess:
      (np_merged_boxes, np_merged_classes, np_merged_confidences,
       np_merged_box_indices) = sess.run(
           [merged_boxes, merged_classes, merged_confidences,
            merged_box_indices])
      self.assertAllClose(np_merged_boxes, expected_merged_boxes)
      self.assertAllClose(np_merged_classes, expected_merged_classes)
      self.assertAllClose(np_merged_confidences, expected_merged_confidences)
1218
1219
1220
      self.assertAllClose(np_merged_box_indices, expected_merged_box_indices)

  def testMergeBoxesWithEmptyInputs(self):
1221
1222
1223
    boxes = tf.zeros([0, 4], dtype=tf.float32)
    class_indices = tf.constant([], dtype=tf.int32)
    class_confidences = tf.constant([], dtype=tf.float32)
1224
    num_classes = 5
1225
1226
1227
    merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
        ops.merge_boxes_with_multiple_labels(
            boxes, class_indices, class_confidences, num_classes))
1228
    with self.test_session() as sess:
1229
1230
1231
1232
      (np_merged_boxes, np_merged_classes, np_merged_confidences,
       np_merged_box_indices) = sess.run(
           [merged_boxes, merged_classes, merged_confidences,
            merged_box_indices])
1233
1234
      self.assertAllEqual(np_merged_boxes.shape, [0, 4])
      self.assertAllEqual(np_merged_classes.shape, [0, 5])
1235
      self.assertAllEqual(np_merged_confidences.shape, [0, 5])
1236
1237
      self.assertAllEqual(np_merged_box_indices.shape, [0])

1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
  def testMergeBoxesWithMultipleLabelsUsesInt64(self):
    boxes = tf.constant(
        [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75],
         [0.25, 0.25, 0.75, 0.75]],
        dtype=tf.float32)
    class_indices = tf.constant([0, 4, 2], dtype=tf.int32)
    class_confidences = tf.constant([0.8, 0.2, 0.1], dtype=tf.float32)
    num_classes = 5
    ops.merge_boxes_with_multiple_labels(
        boxes, class_indices, class_confidences, num_classes)

    graph = tf.get_default_graph()

    def assert_dtype_is_int64(op_name):
      op = graph.get_operation_by_name(op_name)
      self.assertEqual(op.get_attr('dtype'), tf.int64)

    def assert_t_is_int64(op_name):
      op = graph.get_operation_by_name(op_name)
      self.assertEqual(op.get_attr('T'), tf.int64)

    assert_dtype_is_int64('map/TensorArray')
    assert_dtype_is_int64('map/TensorArray_1')
    assert_dtype_is_int64('map/while/TensorArrayReadV3')
    assert_t_is_int64('map/while/TensorArrayWrite/TensorArrayWriteV3')
    assert_t_is_int64(
        'map/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3')
    assert_dtype_is_int64('map/TensorArrayStack/TensorArrayGatherV3')

1267

1268
1269
class NearestNeighborUpsamplingTest(test_case.TestCase):

1270
  def test_upsampling_with_single_scale(self):
1271
1272
1273

    def graph_fn(inputs):
      custom_op_output = ops.nearest_neighbor_upsampling(inputs, scale=2)
1274
1275
1276
1277
1278
1279
1280
1281
1282
      return custom_op_output
    inputs = np.reshape(np.arange(4).astype(np.float32), [1, 2, 2, 1])
    custom_op_output = self.execute(graph_fn, [inputs])

    expected_output = [[[[0], [0], [1], [1]],
                        [[0], [0], [1], [1]],
                        [[2], [2], [3], [3]],
                        [[2], [2], [3], [3]]]]
    self.assertAllClose(custom_op_output, expected_output)
1283

1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
  def test_upsampling_with_separate_height_width_scales(self):

    def graph_fn(inputs):
      custom_op_output = ops.nearest_neighbor_upsampling(inputs,
                                                         height_scale=2,
                                                         width_scale=3)
      return custom_op_output
    inputs = np.reshape(np.arange(4).astype(np.float32), [1, 2, 2, 1])
    custom_op_output = self.execute(graph_fn, [inputs])

    expected_output = [[[[0], [0], [0], [1], [1], [1]],
                        [[0], [0], [0], [1], [1], [1]],
                        [[2], [2], [2], [3], [3], [3]],
                        [[2], [2], [2], [3], [3], [3]]]]
    self.assertAllClose(custom_op_output, expected_output)

1300

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
class MatmulGatherOnZerothAxis(test_case.TestCase):

  def test_gather_2d(self):

    def graph_fn(params, indices):
      return ops.matmul_gather_on_zeroth_axis(params, indices)

    params = np.array([[1, 2, 3, 4],
                       [5, 6, 7, 8],
                       [9, 10, 11, 12],
                       [0, 1, 0, 0]], dtype=np.float32)
1312
    indices = np.array([2, 2, 1], dtype=np.int32)
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
    expected_output = np.array([[9, 10, 11, 12], [9, 10, 11, 12], [5, 6, 7, 8]])
    gather_output = self.execute(graph_fn, [params, indices])
    self.assertAllClose(gather_output, expected_output)

  def test_gather_3d(self):

    def graph_fn(params, indices):
      return ops.matmul_gather_on_zeroth_axis(params, indices)

    params = np.array([[[1, 2], [3, 4]],
                       [[5, 6], [7, 8]],
                       [[9, 10], [11, 12]],
                       [[0, 1], [0, 0]]], dtype=np.float32)
1326
    indices = np.array([0, 3, 1], dtype=np.int32)
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
    expected_output = np.array([[[1, 2], [3, 4]],
                                [[0, 1], [0, 0]],
                                [[5, 6], [7, 8]]])
    gather_output = self.execute(graph_fn, [params, indices])
    self.assertAllClose(gather_output, expected_output)

  def test_gather_with_many_indices(self):

    def graph_fn(params, indices):
      return ops.matmul_gather_on_zeroth_axis(params, indices)

    params = np.array([[1, 2, 3, 4],
                       [5, 6, 7, 8],
                       [9, 10, 11, 12],
                       [0, 1, 0, 0]], dtype=np.float32)
1342
    indices = np.array([0, 0, 0, 0, 0, 0], dtype=np.int32)
1343
1344
1345
1346
    expected_output = np.array(6*[[1, 2, 3, 4]])
    gather_output = self.execute(graph_fn, [params, indices])
    self.assertAllClose(gather_output, expected_output)

1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
  def test_gather_with_dynamic_shape_input(self):
    params_placeholder = tf.placeholder(tf.float32, shape=[None, 4])
    indices_placeholder = tf.placeholder(tf.int32, shape=[None])
    gather_result = ops.matmul_gather_on_zeroth_axis(
        params_placeholder, indices_placeholder)
    params = np.array([[1, 2, 3, 4],
                       [5, 6, 7, 8],
                       [9, 10, 11, 12],
                       [0, 1, 0, 0]], dtype=np.float32)
    indices = np.array([0, 0, 0, 0, 0, 0])
    expected_output = np.array(6*[[1, 2, 3, 4]])
    with self.test_session() as sess:
      gather_output = sess.run(gather_result, feed_dict={
          params_placeholder: params, indices_placeholder: indices})
      self.assertAllClose(gather_output, expected_output)
1362

1363

1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
class FpnFeatureLevelsTest(test_case.TestCase):

  def test_correct_fpn_levels(self):
    image_size = 640
    pretraininig_image_size = 224
    image_ratio = image_size * 1.0 / pretraininig_image_size
    boxes = np.array(
        [
            [
                [0, 0, 111, 111],  # Level 0.
                [0, 0, 113, 113],  # Level 1.
                [0, 0, 223, 223],  # Level 1.
                [0, 0, 225, 225],  # Level 2.
                [0, 0, 449, 449]   # Level 3.
            ],
        ],
        dtype=np.float32) / image_size

    def graph_fn(boxes):
      return ops.fpn_feature_levels(
          num_levels=5, unit_scale_index=2, image_ratio=image_ratio,
          boxes=boxes)

    levels = self.execute(graph_fn, [boxes])
    self.assertAllEqual([[0, 1, 1, 2, 3]], levels)
1389
1390


1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
class TestBfloat16ToFloat32(test_case.TestCase):

  def test_convert_list(self):
    var_list = [
        tf.constant([1.], dtype=tf.bfloat16),
        tf.constant([2], dtype=tf.int32)
    ]
    casted_var_list = ops.bfloat16_to_float32_nested(var_list)
    self.assertEqual(casted_var_list[0].dtype, tf.float32)
    self.assertEqual(casted_var_list[1].dtype, tf.int32)

  def test_convert_tensor_dict(self):
    tensor_dict = {
        'key1': tf.constant([1.], dtype=tf.bfloat16),
        'key2': [
            tf.constant([0.5], dtype=tf.bfloat16),
            tf.constant([7], dtype=tf.int32),
        ],
        'key3': tf.constant([2], dtype=tf.uint8),
    }
    tensor_dict = ops.bfloat16_to_float32_nested(tensor_dict)

    self.assertEqual(tensor_dict['key1'].dtype, tf.float32)
    self.assertEqual(tensor_dict['key2'][0].dtype, tf.float32)
    self.assertEqual(tensor_dict['key2'][1].dtype, tf.int32)
    self.assertEqual(tensor_dict['key3'].dtype, tf.uint8)


class TestGatherWithPaddingValues(test_case.TestCase):

  def test_gather_with_padding_values(self):
    indices = tf.constant([1, -1, 0, -1])
    input_tensor = tf.constant([[0, 0, 0.1, 0.1], [0, 0, 0.2, 0.2]],
                               dtype=tf.float32)
    expected_gathered_tensor = [
        [0, 0, 0.2, 0.2],
        [0, 0, 0, 0],
        [0, 0, 0.1, 0.1],
        [0, 0, 0, 0],
    ]
    gathered_tensor = ops.gather_with_padding_values(
        input_tensor,
        indices=indices,
        padding_value=tf.zeros_like(input_tensor[0]))
    self.assertEqual(gathered_tensor.dtype, tf.float32)
    with self.test_session():
      gathered_tensor_np = gathered_tensor.eval()
    self.assertAllClose(expected_gathered_tensor, gathered_tensor_np)


1441
1442
1443



1444
1445


1446
1447
if __name__ == '__main__':
  tf.test.main()