ops_test.py 59.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Tests for object_detection.utils.ops."""
pkulzc's avatar
pkulzc committed
17
18
19
20
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import numpy as np
pkulzc's avatar
pkulzc committed
22
23
import six
from six.moves import range
24
25
26
27
import tensorflow as tf

from object_detection.core import standard_fields as fields
from object_detection.utils import ops
28
from object_detection.utils import test_case
29

30
31
slim = tf.contrib.slim

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

class NormalizedToImageCoordinatesTest(tf.test.TestCase):

  def test_normalized_to_image_coordinates(self):
    normalized_boxes = tf.placeholder(tf.float32, shape=(None, 1, 4))
    normalized_boxes_np = np.array([[[0.0, 0.0, 1.0, 1.0]],
                                    [[0.5, 0.5, 1.0, 1.0]]])
    image_shape = tf.convert_to_tensor([1, 4, 4, 3], dtype=tf.int32)
    absolute_boxes = ops.normalized_to_image_coordinates(normalized_boxes,
                                                         image_shape,
                                                         parallel_iterations=2)

    expected_boxes = np.array([[[0, 0, 4, 4]],
                               [[2, 2, 4, 4]]])
    with self.test_session() as sess:
      absolute_boxes = sess.run(absolute_boxes,
                                feed_dict={normalized_boxes:
                                           normalized_boxes_np})

    self.assertAllEqual(absolute_boxes, expected_boxes)


54
55
56
57
58
59
60
61
62
63
64
65
class ReduceSumTrailingDimensions(tf.test.TestCase):

  def test_reduce_sum_trailing_dimensions(self):
    input_tensor = tf.placeholder(tf.float32, shape=[None, None, None])
    reduced_tensor = ops.reduce_sum_trailing_dimensions(input_tensor, ndims=2)
    with self.test_session() as sess:
      reduced_np = sess.run(reduced_tensor,
                            feed_dict={input_tensor: np.ones((2, 2, 2),
                                                             np.float32)})
    self.assertAllClose(reduced_np, 2 * np.ones((2, 2), np.float32))


66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
class MeshgridTest(tf.test.TestCase):

  def test_meshgrid_numpy_comparison(self):
    """Tests meshgrid op with vectors, for which it should match numpy."""
    x = np.arange(4)
    y = np.arange(6)
    exp_xgrid, exp_ygrid = np.meshgrid(x, y)
    xgrid, ygrid = ops.meshgrid(x, y)
    with self.test_session() as sess:
      xgrid_output, ygrid_output = sess.run([xgrid, ygrid])
      self.assertAllEqual(xgrid_output, exp_xgrid)
      self.assertAllEqual(ygrid_output, exp_ygrid)

  def test_meshgrid_multidimensional(self):
    np.random.seed(18)
    x = np.random.rand(4, 1, 2).astype(np.float32)
    y = np.random.rand(2, 3).astype(np.float32)

    xgrid, ygrid = ops.meshgrid(x, y)

    grid_shape = list(y.shape) + list(x.shape)
    self.assertEqual(xgrid.get_shape().as_list(), grid_shape)
    self.assertEqual(ygrid.get_shape().as_list(), grid_shape)
    with self.test_session() as sess:
      xgrid_output, ygrid_output = sess.run([xgrid, ygrid])

    # Check the shape of the output grids
    self.assertEqual(xgrid_output.shape, tuple(grid_shape))
    self.assertEqual(ygrid_output.shape, tuple(grid_shape))

    # Check a few elements
    test_elements = [((3, 0, 0), (1, 2)),
                     ((2, 0, 1), (0, 0)),
                     ((0, 0, 0), (1, 1))]
    for xind, yind in test_elements:
      # These are float equality tests, but the meshgrid op should not introduce
      # rounding.
      self.assertEqual(xgrid_output[yind + xind], x[xind])
      self.assertEqual(ygrid_output[yind + xind], y[yind])


107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
class OpsTestFixedPadding(tf.test.TestCase):

  def test_3x3_kernel(self):
    tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
    padded_tensor = ops.fixed_padding(tensor, 3)
    with self.test_session() as sess:
      padded_tensor_out = sess.run(padded_tensor)
    self.assertEqual((1, 4, 4, 1), padded_tensor_out.shape)

  def test_5x5_kernel(self):
    tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
    padded_tensor = ops.fixed_padding(tensor, 5)
    with self.test_session() as sess:
      padded_tensor_out = sess.run(padded_tensor)
    self.assertEqual((1, 6, 6, 1), padded_tensor_out.shape)

  def test_3x3_atrous_kernel(self):
    tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
    padded_tensor = ops.fixed_padding(tensor, 3, 2)
    with self.test_session() as sess:
      padded_tensor_out = sess.run(padded_tensor)
    self.assertEqual((1, 6, 6, 1), padded_tensor_out.shape)


131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
class OpsTestPadToMultiple(tf.test.TestCase):

  def test_zero_padding(self):
    tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
    padded_tensor = ops.pad_to_multiple(tensor, 1)
    with self.test_session() as sess:
      padded_tensor_out = sess.run(padded_tensor)
    self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape)

  def test_no_padding(self):
    tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
    padded_tensor = ops.pad_to_multiple(tensor, 2)
    with self.test_session() as sess:
      padded_tensor_out = sess.run(padded_tensor)
    self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape)

147
148
149
150
151
152
153
  def test_non_square_padding(self):
    tensor = tf.constant([[[[0.], [0.]]]])
    padded_tensor = ops.pad_to_multiple(tensor, 2)
    with self.test_session() as sess:
      padded_tensor_out = sess.run(padded_tensor)
    self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape)

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
  def test_padding(self):
    tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
    padded_tensor = ops.pad_to_multiple(tensor, 4)
    with self.test_session() as sess:
      padded_tensor_out = sess.run(padded_tensor)
    self.assertEqual((1, 4, 4, 1), padded_tensor_out.shape)


class OpsTestPaddedOneHotEncoding(tf.test.TestCase):

  def test_correct_one_hot_tensor_with_no_pad(self):
    indices = tf.constant([1, 2, 3, 5])
    one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=0)
    expected_tensor = np.array([[0, 1, 0, 0, 0, 0],
                                [0, 0, 1, 0, 0, 0],
                                [0, 0, 0, 1, 0, 0],
                                [0, 0, 0, 0, 0, 1]], np.float32)
    with self.test_session() as sess:
      out_one_hot_tensor = sess.run(one_hot_tensor)
      self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10,
                          atol=1e-10)

  def test_correct_one_hot_tensor_with_pad_one(self):
    indices = tf.constant([1, 2, 3, 5])
    one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=1)
    expected_tensor = np.array([[0, 0, 1, 0, 0, 0, 0],
                                [0, 0, 0, 1, 0, 0, 0],
                                [0, 0, 0, 0, 1, 0, 0],
                                [0, 0, 0, 0, 0, 0, 1]], np.float32)
    with self.test_session() as sess:
      out_one_hot_tensor = sess.run(one_hot_tensor)
      self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10,
                          atol=1e-10)

  def test_correct_one_hot_tensor_with_pad_three(self):
    indices = tf.constant([1, 2, 3, 5])
    one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=3)
    expected_tensor = np.array([[0, 0, 0, 0, 1, 0, 0, 0, 0],
                                [0, 0, 0, 0, 0, 1, 0, 0, 0],
                                [0, 0, 0, 0, 0, 0, 1, 0, 0],
                                [0, 0, 0, 0, 0, 0, 0, 0, 1]], np.float32)
    with self.test_session() as sess:
      out_one_hot_tensor = sess.run(one_hot_tensor)
      self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10,
                          atol=1e-10)

  def test_correct_padded_one_hot_tensor_with_empty_indices(self):
    depth = 6
    pad = 2
    indices = tf.constant([])
    one_hot_tensor = ops.padded_one_hot_encoding(
        indices, depth=depth, left_pad=pad)
    expected_tensor = np.zeros((0, depth + pad))
    with self.test_session() as sess:
      out_one_hot_tensor = sess.run(one_hot_tensor)
      self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10,
                          atol=1e-10)

  def test_return_none_on_zero_depth(self):
    indices = tf.constant([1, 2, 3, 4, 5])
    one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=0, left_pad=2)
    self.assertEqual(one_hot_tensor, None)

  def test_raise_value_error_on_rank_two_input(self):
    indices = tf.constant(1.0, shape=(2, 3))
    with self.assertRaises(ValueError):
      ops.padded_one_hot_encoding(indices, depth=6, left_pad=2)

  def test_raise_value_error_on_negative_pad(self):
    indices = tf.constant(1.0, shape=(2, 3))
    with self.assertRaises(ValueError):
      ops.padded_one_hot_encoding(indices, depth=6, left_pad=-1)

  def test_raise_value_error_on_float_pad(self):
    indices = tf.constant(1.0, shape=(2, 3))
    with self.assertRaises(ValueError):
      ops.padded_one_hot_encoding(indices, depth=6, left_pad=0.1)

  def test_raise_value_error_on_float_depth(self):
    indices = tf.constant(1.0, shape=(2, 3))
    with self.assertRaises(ValueError):
      ops.padded_one_hot_encoding(indices, depth=0.1, left_pad=2)


class OpsDenseToSparseBoxesTest(tf.test.TestCase):

  def test_return_all_boxes_when_all_input_boxes_are_valid(self):
    num_classes = 4
    num_valid_boxes = 3
    code_size = 4
    dense_location_placeholder = tf.placeholder(tf.float32,
                                                shape=(num_valid_boxes,
                                                       code_size))
    dense_num_boxes_placeholder = tf.placeholder(tf.int32, shape=(num_classes))
    box_locations, box_classes = ops.dense_to_sparse_boxes(
        dense_location_placeholder, dense_num_boxes_placeholder, num_classes)
    feed_dict = {dense_location_placeholder: np.random.uniform(
        size=[num_valid_boxes, code_size]),
                 dense_num_boxes_placeholder: np.array([1, 0, 0, 2],
                                                       dtype=np.int32)}

    expected_box_locations = feed_dict[dense_location_placeholder]
    expected_box_classses = np.array([0, 3, 3])
    with self.test_session() as sess:
      box_locations, box_classes = sess.run([box_locations, box_classes],
                                            feed_dict=feed_dict)

    self.assertAllClose(box_locations, expected_box_locations, rtol=1e-6,
                        atol=1e-6)
    self.assertAllEqual(box_classes, expected_box_classses)

  def test_return_only_valid_boxes_when_input_contains_invalid_boxes(self):
    num_classes = 4
    num_valid_boxes = 3
    num_boxes = 10
    code_size = 4

    dense_location_placeholder = tf.placeholder(tf.float32, shape=(num_boxes,
                                                                   code_size))
    dense_num_boxes_placeholder = tf.placeholder(tf.int32, shape=(num_classes))
    box_locations, box_classes = ops.dense_to_sparse_boxes(
        dense_location_placeholder, dense_num_boxes_placeholder, num_classes)
    feed_dict = {dense_location_placeholder: np.random.uniform(
        size=[num_boxes, code_size]),
                 dense_num_boxes_placeholder: np.array([1, 0, 0, 2],
                                                       dtype=np.int32)}

    expected_box_locations = (feed_dict[dense_location_placeholder]
                              [:num_valid_boxes])
    expected_box_classses = np.array([0, 3, 3])
    with self.test_session() as sess:
      box_locations, box_classes = sess.run([box_locations, box_classes],
                                            feed_dict=feed_dict)

    self.assertAllClose(box_locations, expected_box_locations, rtol=1e-6,
                        atol=1e-6)
    self.assertAllEqual(box_classes, expected_box_classses)


class OpsTestIndicesToDenseVector(tf.test.TestCase):

  def test_indices_to_dense_vector(self):
    size = 10000
    num_indices = np.random.randint(size)
    rand_indices = np.random.permutation(np.arange(size))[0:num_indices]

    expected_output = np.zeros(size, dtype=np.float32)
    expected_output[rand_indices] = 1.

    tf_rand_indices = tf.constant(rand_indices)
    indicator = ops.indices_to_dense_vector(tf_rand_indices, size)

    with self.test_session() as sess:
      output = sess.run(indicator)
      self.assertAllEqual(output, expected_output)
      self.assertEqual(output.dtype, expected_output.dtype)

  def test_indices_to_dense_vector_size_at_inference(self):
    size = 5000
    num_indices = 250
    all_indices = np.arange(size)
    rand_indices = np.random.permutation(all_indices)[0:num_indices]

    expected_output = np.zeros(size, dtype=np.float32)
    expected_output[rand_indices] = 1.

    tf_all_indices = tf.placeholder(tf.int32)
    tf_rand_indices = tf.constant(rand_indices)
    indicator = ops.indices_to_dense_vector(tf_rand_indices,
                                            tf.shape(tf_all_indices)[0])
    feed_dict = {tf_all_indices: all_indices}

    with self.test_session() as sess:
      output = sess.run(indicator, feed_dict=feed_dict)
      self.assertAllEqual(output, expected_output)
      self.assertEqual(output.dtype, expected_output.dtype)

  def test_indices_to_dense_vector_int(self):
    size = 500
    num_indices = 25
    rand_indices = np.random.permutation(np.arange(size))[0:num_indices]

    expected_output = np.zeros(size, dtype=np.int64)
    expected_output[rand_indices] = 1

    tf_rand_indices = tf.constant(rand_indices)
    indicator = ops.indices_to_dense_vector(
        tf_rand_indices, size, 1, dtype=tf.int64)

    with self.test_session() as sess:
      output = sess.run(indicator)
      self.assertAllEqual(output, expected_output)
      self.assertEqual(output.dtype, expected_output.dtype)

  def test_indices_to_dense_vector_custom_values(self):
    size = 100
    num_indices = 10
    rand_indices = np.random.permutation(np.arange(size))[0:num_indices]
    indices_value = np.random.rand(1)
    default_value = np.random.rand(1)

    expected_output = np.float32(np.ones(size) * default_value)
    expected_output[rand_indices] = indices_value

    tf_rand_indices = tf.constant(rand_indices)
    indicator = ops.indices_to_dense_vector(
        tf_rand_indices,
        size,
        indices_value=indices_value,
        default_value=default_value)

    with self.test_session() as sess:
      output = sess.run(indicator)
      self.assertAllClose(output, expected_output)
      self.assertEqual(output.dtype, expected_output.dtype)

  def test_indices_to_dense_vector_all_indices_as_input(self):
    size = 500
    num_indices = 500
    rand_indices = np.random.permutation(np.arange(size))[0:num_indices]

    expected_output = np.ones(size, dtype=np.float32)

    tf_rand_indices = tf.constant(rand_indices)
    indicator = ops.indices_to_dense_vector(tf_rand_indices, size)

    with self.test_session() as sess:
      output = sess.run(indicator)
      self.assertAllEqual(output, expected_output)
      self.assertEqual(output.dtype, expected_output.dtype)

  def test_indices_to_dense_vector_empty_indices_as_input(self):
    size = 500
    rand_indices = []

    expected_output = np.zeros(size, dtype=np.float32)

    tf_rand_indices = tf.constant(rand_indices)
    indicator = ops.indices_to_dense_vector(tf_rand_indices, size)

    with self.test_session() as sess:
      output = sess.run(indicator)
      self.assertAllEqual(output, expected_output)
      self.assertEqual(output.dtype, expected_output.dtype)


class GroundtruthFilterTest(tf.test.TestCase):

  def test_filter_groundtruth(self):
    input_image = tf.placeholder(tf.float32, shape=(None, None, 3))
    input_boxes = tf.placeholder(tf.float32, shape=(None, 4))
    input_classes = tf.placeholder(tf.int32, shape=(None,))
    input_is_crowd = tf.placeholder(tf.bool, shape=(None,))
    input_area = tf.placeholder(tf.float32, shape=(None,))
    input_difficult = tf.placeholder(tf.float32, shape=(None,))
    input_label_types = tf.placeholder(tf.string, shape=(None,))
410
    input_confidences = tf.placeholder(tf.float32, shape=(None,))
411
412
413
414
415
416
417
418
    valid_indices = tf.placeholder(tf.int32, shape=(None,))
    input_tensors = {
        fields.InputDataFields.image: input_image,
        fields.InputDataFields.groundtruth_boxes: input_boxes,
        fields.InputDataFields.groundtruth_classes: input_classes,
        fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
        fields.InputDataFields.groundtruth_area: input_area,
        fields.InputDataFields.groundtruth_difficult: input_difficult,
419
420
        fields.InputDataFields.groundtruth_label_types: input_label_types,
        fields.InputDataFields.groundtruth_confidences: input_confidences,
421
422
423
424
425
426
427
428
    }
    output_tensors = ops.retain_groundtruth(input_tensors, valid_indices)

    image_tensor = np.random.rand(224, 224, 3)
    feed_dict = {
        input_image: image_tensor,
        input_boxes:
        np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], dtype=np.float),
429
430
431
432
        input_classes: np.array([1, 2], dtype=np.int32),
        input_is_crowd: np.array([False, True], dtype=np.bool),
        input_area: np.array([32, 48], dtype=np.float32),
        input_difficult: np.array([True, False], dtype=np.bool),
433
434
        input_label_types:
        np.array(['APPROPRIATE', 'INCORRECT'], dtype=np.string_),
435
436
        input_confidences: np.array([0.99, 0.5], dtype=np.float32),
        valid_indices: np.array([0], dtype=np.int32),
437
438
    }
    expected_tensors = {
439
440
441
442
443
444
        fields.InputDataFields.image: image_tensor,
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [1],
        fields.InputDataFields.groundtruth_is_crowd: [False],
        fields.InputDataFields.groundtruth_area: [32],
        fields.InputDataFields.groundtruth_difficult: [True],
pkulzc's avatar
pkulzc committed
445
        fields.InputDataFields.groundtruth_label_types: [six.b('APPROPRIATE')],
446
        fields.InputDataFields.groundtruth_confidences: [0.99],
447
448
449
450
451
    }
    with self.test_session() as sess:
      output_tensors = sess.run(output_tensors, feed_dict=feed_dict)
      for key in [fields.InputDataFields.image,
                  fields.InputDataFields.groundtruth_boxes,
452
453
                  fields.InputDataFields.groundtruth_area,
                  fields.InputDataFields.groundtruth_confidences]:
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
        self.assertAllClose(expected_tensors[key], output_tensors[key])
      for key in [fields.InputDataFields.groundtruth_classes,
                  fields.InputDataFields.groundtruth_is_crowd,
                  fields.InputDataFields.groundtruth_label_types]:
        self.assertAllEqual(expected_tensors[key], output_tensors[key])

  def test_filter_with_missing_fields(self):
    input_boxes = tf.placeholder(tf.float32, shape=(None, 4))
    input_classes = tf.placeholder(tf.int32, shape=(None,))
    input_tensors = {
        fields.InputDataFields.groundtruth_boxes: input_boxes,
        fields.InputDataFields.groundtruth_classes: input_classes
    }
    valid_indices = tf.placeholder(tf.int32, shape=(None,))

    feed_dict = {
        input_boxes:
        np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], dtype=np.float),
        input_classes:
        np.array([1, 2], dtype=np.int32),
        valid_indices:
        np.array([0], dtype=np.int32)
    }
    expected_tensors = {
        fields.InputDataFields.groundtruth_boxes:
        [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes:
        [1]
    }

    output_tensors = ops.retain_groundtruth(input_tensors, valid_indices)
    with self.test_session() as sess:
      output_tensors = sess.run(output_tensors, feed_dict=feed_dict)
      for key in [fields.InputDataFields.groundtruth_boxes]:
        self.assertAllClose(expected_tensors[key], output_tensors[key])
      for key in [fields.InputDataFields.groundtruth_classes]:
        self.assertAllEqual(expected_tensors[key], output_tensors[key])

  def test_filter_with_empty_fields(self):
    input_boxes = tf.placeholder(tf.float32, shape=(None, 4))
    input_classes = tf.placeholder(tf.int32, shape=(None,))
    input_is_crowd = tf.placeholder(tf.bool, shape=(None,))
    input_area = tf.placeholder(tf.float32, shape=(None,))
    input_difficult = tf.placeholder(tf.float32, shape=(None,))
498
    input_confidences = tf.placeholder(tf.float32, shape=(None,))
499
500
501
502
503
504
    valid_indices = tf.placeholder(tf.int32, shape=(None,))
    input_tensors = {
        fields.InputDataFields.groundtruth_boxes: input_boxes,
        fields.InputDataFields.groundtruth_classes: input_classes,
        fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
        fields.InputDataFields.groundtruth_area: input_area,
505
506
        fields.InputDataFields.groundtruth_difficult: input_difficult,
        fields.InputDataFields.groundtruth_confidences: input_confidences,
507
508
509
510
511
512
    }
    output_tensors = ops.retain_groundtruth(input_tensors, valid_indices)

    feed_dict = {
        input_boxes:
        np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], dtype=np.float),
513
514
515
516
517
518
        input_classes: np.array([1, 2], dtype=np.int32),
        input_is_crowd: np.array([False, True], dtype=np.bool),
        input_area: np.array([], dtype=np.float32),
        input_difficult: np.array([], dtype=np.float32),
        input_confidences: np.array([0.99, 0.5], dtype=np.float32),
        valid_indices: np.array([0], dtype=np.int32)
519
520
    }
    expected_tensors = {
521
522
523
524
525
526
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [1],
        fields.InputDataFields.groundtruth_is_crowd: [False],
        fields.InputDataFields.groundtruth_area: [],
        fields.InputDataFields.groundtruth_difficult: [],
        fields.InputDataFields.groundtruth_confidences: [0.99],
527
528
529
530
    }
    with self.test_session() as sess:
      output_tensors = sess.run(output_tensors, feed_dict=feed_dict)
      for key in [fields.InputDataFields.groundtruth_boxes,
531
532
                  fields.InputDataFields.groundtruth_area,
                  fields.InputDataFields.groundtruth_confidences]:
533
534
535
536
537
538
539
540
541
542
543
        self.assertAllClose(expected_tensors[key], output_tensors[key])
      for key in [fields.InputDataFields.groundtruth_classes,
                  fields.InputDataFields.groundtruth_is_crowd]:
        self.assertAllEqual(expected_tensors[key], output_tensors[key])

  def test_filter_with_empty_groundtruth_boxes(self):
    input_boxes = tf.placeholder(tf.float32, shape=(None, 4))
    input_classes = tf.placeholder(tf.int32, shape=(None,))
    input_is_crowd = tf.placeholder(tf.bool, shape=(None,))
    input_area = tf.placeholder(tf.float32, shape=(None,))
    input_difficult = tf.placeholder(tf.float32, shape=(None,))
544
    input_confidences = tf.placeholder(tf.float32, shape=(None,))
545
546
547
548
549
550
    valid_indices = tf.placeholder(tf.int32, shape=(None,))
    input_tensors = {
        fields.InputDataFields.groundtruth_boxes: input_boxes,
        fields.InputDataFields.groundtruth_classes: input_classes,
        fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
        fields.InputDataFields.groundtruth_area: input_area,
551
552
        fields.InputDataFields.groundtruth_difficult: input_difficult,
        fields.InputDataFields.groundtruth_confidences: input_confidences,
553
554
555
556
    }
    output_tensors = ops.retain_groundtruth(input_tensors, valid_indices)

    feed_dict = {
557
558
559
560
561
562
563
        input_boxes: np.array([], dtype=np.float).reshape(0, 4),
        input_classes: np.array([], dtype=np.int32),
        input_is_crowd: np.array([], dtype=np.bool),
        input_area: np.array([], dtype=np.float32),
        input_difficult: np.array([], dtype=np.float32),
        input_confidences: np.array([], dtype=np.float32),
        valid_indices: np.array([], dtype=np.int32),
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
    }
    with self.test_session() as sess:
      output_tensors = sess.run(output_tensors, feed_dict=feed_dict)
      for key in input_tensors:
        if key == fields.InputDataFields.groundtruth_boxes:
          self.assertAllEqual([0, 4], output_tensors[key].shape)
        else:
          self.assertAllEqual([0], output_tensors[key].shape)


class RetainGroundTruthWithPositiveClasses(tf.test.TestCase):

  def test_filter_groundtruth_with_positive_classes(self):
    input_image = tf.placeholder(tf.float32, shape=(None, None, 3))
    input_boxes = tf.placeholder(tf.float32, shape=(None, 4))
    input_classes = tf.placeholder(tf.int32, shape=(None,))
    input_is_crowd = tf.placeholder(tf.bool, shape=(None,))
    input_area = tf.placeholder(tf.float32, shape=(None,))
    input_difficult = tf.placeholder(tf.float32, shape=(None,))
    input_label_types = tf.placeholder(tf.string, shape=(None,))
584
    input_confidences = tf.placeholder(tf.float32, shape=(None,))
585
586
587
588
589
590
591
592
    valid_indices = tf.placeholder(tf.int32, shape=(None,))
    input_tensors = {
        fields.InputDataFields.image: input_image,
        fields.InputDataFields.groundtruth_boxes: input_boxes,
        fields.InputDataFields.groundtruth_classes: input_classes,
        fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
        fields.InputDataFields.groundtruth_area: input_area,
        fields.InputDataFields.groundtruth_difficult: input_difficult,
593
594
        fields.InputDataFields.groundtruth_label_types: input_label_types,
        fields.InputDataFields.groundtruth_confidences: input_confidences,
595
596
597
598
599
600
601
602
    }
    output_tensors = ops.retain_groundtruth_with_positive_classes(input_tensors)

    image_tensor = np.random.rand(224, 224, 3)
    feed_dict = {
        input_image: image_tensor,
        input_boxes:
        np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], dtype=np.float),
603
604
605
606
        input_classes: np.array([1, 0], dtype=np.int32),
        input_is_crowd: np.array([False, True], dtype=np.bool),
        input_area: np.array([32, 48], dtype=np.float32),
        input_difficult: np.array([True, False], dtype=np.bool),
607
608
        input_label_types:
        np.array(['APPROPRIATE', 'INCORRECT'], dtype=np.string_),
609
610
        input_confidences: np.array([0.99, 0.5], dtype=np.float32),
        valid_indices: np.array([0], dtype=np.int32),
611
612
    }
    expected_tensors = {
613
614
615
616
617
618
        fields.InputDataFields.image: image_tensor,
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [1],
        fields.InputDataFields.groundtruth_is_crowd: [False],
        fields.InputDataFields.groundtruth_area: [32],
        fields.InputDataFields.groundtruth_difficult: [True],
pkulzc's avatar
pkulzc committed
619
        fields.InputDataFields.groundtruth_label_types: [six.b('APPROPRIATE')],
620
        fields.InputDataFields.groundtruth_confidences: [0.99],
621
622
623
624
625
    }
    with self.test_session() as sess:
      output_tensors = sess.run(output_tensors, feed_dict=feed_dict)
      for key in [fields.InputDataFields.image,
                  fields.InputDataFields.groundtruth_boxes,
626
627
                  fields.InputDataFields.groundtruth_area,
                  fields.InputDataFields.groundtruth_confidences]:
628
629
630
631
632
633
634
        self.assertAllClose(expected_tensors[key], output_tensors[key])
      for key in [fields.InputDataFields.groundtruth_classes,
                  fields.InputDataFields.groundtruth_is_crowd,
                  fields.InputDataFields.groundtruth_label_types]:
        self.assertAllEqual(expected_tensors[key], output_tensors[key])


635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
class ReplaceNaNGroundtruthLabelScoresWithOnes(tf.test.TestCase):

  def test_replace_nan_groundtruth_label_scores_with_ones(self):
    label_scores = tf.constant([np.nan, 1.0, np.nan])
    output_tensor = ops.replace_nan_groundtruth_label_scores_with_ones(
        label_scores)
    expected_tensor = [1.0, 1.0, 1.0]
    with self.test_session():
      output_tensor = output_tensor.eval()
      self.assertAllClose(expected_tensor, output_tensor)

  def test_input_equals_output_when_no_nans(self):
    input_label_scores = [0.5, 1.0, 1.0]
    label_scores_tensor = tf.constant(input_label_scores)
    output_label_scores = ops.replace_nan_groundtruth_label_scores_with_ones(
        label_scores_tensor)
    with self.test_session():
      output_label_scores = output_label_scores.eval()
      self.assertAllClose(input_label_scores, output_label_scores)


class GroundtruthFilterWithCrowdBoxesTest(tf.test.TestCase):

  def test_filter_groundtruth_with_crowd_boxes(self):
    input_tensors = {
        fields.InputDataFields.groundtruth_boxes:
        [[0.1, 0.2, 0.6, 0.8], [0.2, 0.4, 0.1, 0.8]],
662
663
664
665
        fields.InputDataFields.groundtruth_classes: [1, 2],
        fields.InputDataFields.groundtruth_is_crowd: [True, False],
        fields.InputDataFields.groundtruth_area: [100.0, 238.7],
        fields.InputDataFields.groundtruth_confidences: [0.5, 0.99],
666
667
668
    }

    expected_tensors = {
669
670
671
672
673
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [2],
        fields.InputDataFields.groundtruth_is_crowd: [False],
        fields.InputDataFields.groundtruth_area: [238.7],
        fields.InputDataFields.groundtruth_confidences: [0.99],
674
675
676
677
678
679
680
    }

    output_tensors = ops.filter_groundtruth_with_crowd_boxes(
        input_tensors)
    with self.test_session() as sess:
      output_tensors = sess.run(output_tensors)
      for key in [fields.InputDataFields.groundtruth_boxes,
681
682
                  fields.InputDataFields.groundtruth_area,
                  fields.InputDataFields.groundtruth_confidences]:
683
684
685
686
687
688
        self.assertAllClose(expected_tensors[key], output_tensors[key])
      for key in [fields.InputDataFields.groundtruth_classes,
                  fields.InputDataFields.groundtruth_is_crowd]:
        self.assertAllEqual(expected_tensors[key], output_tensors[key])


689
690
691
692
693
694
class GroundtruthFilterWithNanBoxTest(tf.test.TestCase):

  def test_filter_groundtruth_with_nan_box_coordinates(self):
    input_tensors = {
        fields.InputDataFields.groundtruth_boxes:
        [[np.nan, np.nan, np.nan, np.nan], [0.2, 0.4, 0.1, 0.8]],
695
696
697
698
        fields.InputDataFields.groundtruth_classes: [1, 2],
        fields.InputDataFields.groundtruth_is_crowd: [False, True],
        fields.InputDataFields.groundtruth_area: [100.0, 238.7],
        fields.InputDataFields.groundtruth_confidences: [0.5, 0.99],
699
700
701
    }

    expected_tensors = {
702
703
704
705
706
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [2],
        fields.InputDataFields.groundtruth_is_crowd: [True],
        fields.InputDataFields.groundtruth_area: [238.7],
        fields.InputDataFields.groundtruth_confidences: [0.99],
707
708
709
710
711
712
713
    }

    output_tensors = ops.filter_groundtruth_with_nan_box_coordinates(
        input_tensors)
    with self.test_session() as sess:
      output_tensors = sess.run(output_tensors)
      for key in [fields.InputDataFields.groundtruth_boxes,
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
                  fields.InputDataFields.groundtruth_area,
                  fields.InputDataFields.groundtruth_confidences]:
        self.assertAllClose(expected_tensors[key], output_tensors[key])
      for key in [fields.InputDataFields.groundtruth_classes,
                  fields.InputDataFields.groundtruth_is_crowd]:
        self.assertAllEqual(expected_tensors[key], output_tensors[key])


class GroundtruthFilterWithUnrecognizedClassesTest(tf.test.TestCase):

  def test_filter_unrecognized_classes(self):
    input_tensors = {
        fields.InputDataFields.groundtruth_boxes:
        [[.3, .3, .5, .7], [0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [-1, 2],
        fields.InputDataFields.groundtruth_is_crowd: [False, True],
        fields.InputDataFields.groundtruth_area: [100.0, 238.7],
        fields.InputDataFields.groundtruth_confidences: [0.5, 0.99],
    }

    expected_tensors = {
        fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
        fields.InputDataFields.groundtruth_classes: [2],
        fields.InputDataFields.groundtruth_is_crowd: [True],
        fields.InputDataFields.groundtruth_area: [238.7],
        fields.InputDataFields.groundtruth_confidences: [0.99],
    }

    output_tensors = ops.filter_unrecognized_classes(input_tensors)
    with self.test_session() as sess:
      output_tensors = sess.run(output_tensors)
      for key in [fields.InputDataFields.groundtruth_boxes,
                  fields.InputDataFields.groundtruth_area,
                  fields.InputDataFields.groundtruth_confidences]:
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
        self.assertAllClose(expected_tensors[key], output_tensors[key])
      for key in [fields.InputDataFields.groundtruth_classes,
                  fields.InputDataFields.groundtruth_is_crowd]:
        self.assertAllEqual(expected_tensors[key], output_tensors[key])


class OpsTestNormalizeToTarget(tf.test.TestCase):

  def test_create_normalize_to_target(self):
    inputs = tf.random_uniform([5, 10, 12, 3])
    target_norm_value = 4.0
    dim = 3
    with self.test_session():
      output = ops.normalize_to_target(inputs, target_norm_value, dim)
      self.assertEqual(output.op.name, 'NormalizeToTarget/mul')
      var_name = tf.contrib.framework.get_variables()[0].name
      self.assertEqual(var_name, 'NormalizeToTarget/weights:0')

  def test_invalid_dim(self):
    inputs = tf.random_uniform([5, 10, 12, 3])
    target_norm_value = 4.0
    dim = 10
    with self.assertRaisesRegexp(
        ValueError,
        'dim must be non-negative but smaller than the input rank.'):
      ops.normalize_to_target(inputs, target_norm_value, dim)

  def test_invalid_target_norm_values(self):
    inputs = tf.random_uniform([5, 10, 12, 3])
    target_norm_value = [4.0, 4.0]
    dim = 3
    with self.assertRaisesRegexp(
        ValueError, 'target_norm_value must be a float or a list of floats'):
      ops.normalize_to_target(inputs, target_norm_value, dim)

  def test_correct_output_shape(self):
    inputs = tf.random_uniform([5, 10, 12, 3])
    target_norm_value = 4.0
    dim = 3
    with self.test_session():
      output = ops.normalize_to_target(inputs, target_norm_value, dim)
      self.assertEqual(output.get_shape().as_list(),
                       inputs.get_shape().as_list())

  def test_correct_initial_output_values(self):
    inputs = tf.constant([[[[3, 4], [7, 24]],
                           [[5, -12], [-1, 0]]]], tf.float32)
    target_norm_value = 10.0
    dim = 3
    expected_output = [[[[30/5.0, 40/5.0], [70/25.0, 240/25.0]],
                        [[50/13.0, -120/13.0], [-10, 0]]]]
    with self.test_session() as sess:
      normalized_inputs = ops.normalize_to_target(inputs, target_norm_value,
                                                  dim)
      sess.run(tf.global_variables_initializer())
      output = normalized_inputs.eval()
      self.assertAllClose(output, expected_output)

  def test_multiple_target_norm_values(self):
    inputs = tf.constant([[[[3, 4], [7, 24]],
                           [[5, -12], [-1, 0]]]], tf.float32)
    target_norm_value = [10.0, 20.0]
    dim = 3
    expected_output = [[[[30/5.0, 80/5.0], [70/25.0, 480/25.0]],
                        [[50/13.0, -240/13.0], [-10, 0]]]]
    with self.test_session() as sess:
      normalized_inputs = ops.normalize_to_target(inputs, target_norm_value,
                                                  dim)
      sess.run(tf.global_variables_initializer())
      output = normalized_inputs.eval()
      self.assertAllClose(output, expected_output)


class OpsTestPositionSensitiveCropRegions(tf.test.TestCase):

  def test_position_sensitive(self):
    num_spatial_bins = [3, 2]
825
    image_shape = [3, 2, 6]
826
827

    # First channel is 1's, second channel is 2's, etc.
pkulzc's avatar
pkulzc committed
828
829
    image = tf.constant(
        list(range(1, 3 * 2 + 1)) * 6, dtype=tf.float32, shape=image_shape)
830
831
832
833
834
835
836
837
838
    boxes = tf.random_uniform((2, 4))

    # The result for both boxes should be [[1, 2], [3, 4], [5, 6]]
    # before averaging.
    expected_output = np.array([3.5, 3.5]).reshape([2, 1, 1, 1])

    for crop_size_mult in range(1, 3):
      crop_size = [3 * crop_size_mult, 2 * crop_size_mult]
      ps_crop_and_pool = ops.position_sensitive_crop_regions(
839
          image, boxes, crop_size, num_spatial_bins, global_pool=True)
840
841
842
843
844
845
846

      with self.test_session() as sess:
        output = sess.run(ps_crop_and_pool)
        self.assertAllClose(output, expected_output)

  def test_position_sensitive_with_equal_channels(self):
    num_spatial_bins = [2, 2]
847
    image_shape = [3, 3, 4]
848
849
    crop_size = [2, 2]

pkulzc's avatar
pkulzc committed
850
851
    image = tf.constant(
        list(range(1, 3 * 3 + 1)), dtype=tf.float32, shape=[3, 3, 1])
852
    tiled_image = tf.tile(image, [1, 1, image_shape[2]])
853
854
855
856
857
    boxes = tf.random_uniform((3, 4))
    box_ind = tf.constant([0, 0, 0], dtype=tf.int32)

    # All channels are equal so position-sensitive crop and resize should
    # work as the usual crop and resize for just one channel.
858
859
    crop = tf.image.crop_and_resize(tf.expand_dims(image, axis=0), boxes,
                                    box_ind, crop_size)
860
    crop_and_pool = tf.reduce_mean(crop, [1, 2], keepdims=True)
861
862
863
864
865
866
867
868
869
870
871
872
873
874

    ps_crop_and_pool = ops.position_sensitive_crop_regions(
        tiled_image,
        boxes,
        crop_size,
        num_spatial_bins,
        global_pool=True)

    with self.test_session() as sess:
      expected_output, output = sess.run((crop_and_pool, ps_crop_and_pool))
      self.assertAllClose(output, expected_output)

  def test_raise_value_error_on_num_bins_less_than_one(self):
    num_spatial_bins = [1, -1]
875
    image_shape = [1, 1, 2]
876
877
878
879
880
881
882
    crop_size = [2, 2]

    image = tf.constant(1, dtype=tf.float32, shape=image_shape)
    boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)

    with self.assertRaisesRegexp(ValueError, 'num_spatial_bins should be >= 1'):
      ops.position_sensitive_crop_regions(
883
          image, boxes, crop_size, num_spatial_bins, global_pool=True)
884
885
886

  def test_raise_value_error_on_non_divisible_crop_size(self):
    num_spatial_bins = [2, 3]
887
    image_shape = [1, 1, 6]
888
889
890
891
892
893
894
895
    crop_size = [3, 2]

    image = tf.constant(1, dtype=tf.float32, shape=image_shape)
    boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)

    with self.assertRaisesRegexp(
        ValueError, 'crop_size should be divisible by num_spatial_bins'):
      ops.position_sensitive_crop_regions(
896
          image, boxes, crop_size, num_spatial_bins, global_pool=True)
897
898
899

  def test_raise_value_error_on_non_divisible_num_channels(self):
    num_spatial_bins = [2, 2]
900
    image_shape = [1, 1, 5]
901
902
903
904
905
906
907
908
    crop_size = [2, 2]

    image = tf.constant(1, dtype=tf.float32, shape=image_shape)
    boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)

    with self.assertRaisesRegexp(
        ValueError, 'Dimension size must be evenly divisible by 4 but is 5'):
      ops.position_sensitive_crop_regions(
909
          image, boxes, crop_size, num_spatial_bins, global_pool=True)
910
911
912

  def test_position_sensitive_with_global_pool_false(self):
    num_spatial_bins = [3, 2]
913
    image_shape = [3, 2, 6]
914
915
916
    num_boxes = 2

    # First channel is 1's, second channel is 2's, etc.
pkulzc's avatar
pkulzc committed
917
918
    image = tf.constant(
        list(range(1, 3 * 2 + 1)) * 6, dtype=tf.float32, shape=image_shape)
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
    boxes = tf.random_uniform((num_boxes, 4))

    expected_output = []

    # Expected output, when crop_size = [3, 2].
    expected_output.append(np.expand_dims(
        np.tile(np.array([[1, 2],
                          [3, 4],
                          [5, 6]]), (num_boxes, 1, 1)),
        axis=-1))

    # Expected output, when crop_size = [6, 4].
    expected_output.append(np.expand_dims(
        np.tile(np.array([[1, 1, 2, 2],
                          [1, 1, 2, 2],
                          [3, 3, 4, 4],
                          [3, 3, 4, 4],
                          [5, 5, 6, 6],
                          [5, 5, 6, 6]]), (num_boxes, 1, 1)),
        axis=-1))

    for crop_size_mult in range(1, 3):
      crop_size = [3 * crop_size_mult, 2 * crop_size_mult]
      ps_crop = ops.position_sensitive_crop_regions(
943
          image, boxes, crop_size, num_spatial_bins, global_pool=False)
944
945
      with self.test_session() as sess:
        output = sess.run(ps_crop)
946
      self.assertAllClose(output, expected_output[crop_size_mult - 1])
947
948
949

  def test_position_sensitive_with_global_pool_false_and_do_global_pool(self):
    num_spatial_bins = [3, 2]
950
    image_shape = [3, 2, 6]
951
952
953
    num_boxes = 2

    # First channel is 1's, second channel is 2's, etc.
pkulzc's avatar
pkulzc committed
954
955
    image = tf.constant(
        list(range(1, 3 * 2 + 1)) * 6, dtype=tf.float32, shape=image_shape)
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
    boxes = tf.random_uniform((num_boxes, 4))

    expected_output = []

    # Expected output, when crop_size = [3, 2].
    expected_output.append(np.mean(
        np.expand_dims(
            np.tile(np.array([[1, 2],
                              [3, 4],
                              [5, 6]]), (num_boxes, 1, 1)),
            axis=-1),
        axis=(1, 2), keepdims=True))

    # Expected output, when crop_size = [6, 4].
    expected_output.append(np.mean(
        np.expand_dims(
            np.tile(np.array([[1, 1, 2, 2],
                              [1, 1, 2, 2],
                              [3, 3, 4, 4],
                              [3, 3, 4, 4],
                              [5, 5, 6, 6],
                              [5, 5, 6, 6]]), (num_boxes, 1, 1)),
            axis=-1),
        axis=(1, 2), keepdims=True))

    for crop_size_mult in range(1, 3):
      crop_size = [3 * crop_size_mult, 2 * crop_size_mult]

      # Perform global_pooling after running the function with
      # global_pool=False.
      ps_crop = ops.position_sensitive_crop_regions(
987
          image, boxes, crop_size, num_spatial_bins, global_pool=False)
988
      ps_crop_and_pool = tf.reduce_mean(
989
          ps_crop, reduction_indices=(1, 2), keepdims=True)
990
991
992
993
994
995
996
997

      with self.test_session() as sess:
        output = sess.run(ps_crop_and_pool)

      self.assertAllEqual(output, expected_output[crop_size_mult - 1])

  def test_raise_value_error_on_non_square_block_size(self):
    num_spatial_bins = [3, 2]
998
    image_shape = [3, 2, 6]
999
1000
1001
1002
1003
1004
1005
1006
    crop_size = [6, 2]

    image = tf.constant(1, dtype=tf.float32, shape=image_shape)
    boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)

    with self.assertRaisesRegexp(
        ValueError, 'Only support square bin crop size for now.'):
      ops.position_sensitive_crop_regions(
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
          image, boxes, crop_size, num_spatial_bins, global_pool=False)


class OpsTestBatchPositionSensitiveCropRegions(tf.test.TestCase):

  def test_position_sensitive_with_single_bin(self):
    num_spatial_bins = [1, 1]
    image_shape = [2, 3, 3, 4]
    crop_size = [2, 2]

    image = tf.random_uniform(image_shape)
    boxes = tf.random_uniform((2, 3, 4))
    box_ind = tf.constant([0, 0, 0, 1, 1, 1], dtype=tf.int32)

    # When a single bin is used, position-sensitive crop and pool should be
    # the same as non-position sensitive crop and pool.
    crop = tf.image.crop_and_resize(image, tf.reshape(boxes, [-1, 4]), box_ind,
                                    crop_size)
    crop_and_pool = tf.reduce_mean(crop, [1, 2], keepdims=True)
    crop_and_pool = tf.reshape(crop_and_pool, [2, 3, 1, 1, 4])

    ps_crop_and_pool = ops.batch_position_sensitive_crop_regions(
        image, boxes, crop_size, num_spatial_bins, global_pool=True)

    with self.test_session() as sess:
      expected_output, output = sess.run((crop_and_pool, ps_crop_and_pool))
      self.assertAllClose(output, expected_output)

  def test_position_sensitive_with_global_pool_false_and_known_boxes(self):
    num_spatial_bins = [2, 2]
    image_shape = [2, 2, 2, 4]
    crop_size = [2, 2]

pkulzc's avatar
pkulzc committed
1040
1041
    images = tf.constant(
        list(range(1, 2 * 2 * 4 + 1)) * 2, dtype=tf.float32, shape=image_shape)
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090

    # First box contains whole image, and second box contains only first row.
    boxes = tf.constant(np.array([[[0., 0., 1., 1.]],
                                  [[0., 0., 0.5, 1.]]]), dtype=tf.float32)
    # box_ind = tf.constant([0, 1], dtype=tf.int32)

    expected_output = []

    # Expected output, when the box containing whole image.
    expected_output.append(
        np.reshape(np.array([[4, 7],
                             [10, 13]]),
                   (1, 2, 2, 1))
    )

    # Expected output, when the box containing only first row.
    expected_output.append(
        np.reshape(np.array([[3, 6],
                             [7, 10]]),
                   (1, 2, 2, 1))
    )
    expected_output = np.stack(expected_output, axis=0)

    ps_crop = ops.batch_position_sensitive_crop_regions(
        images, boxes, crop_size, num_spatial_bins, global_pool=False)

    with self.test_session() as sess:
      output = sess.run(ps_crop)
      self.assertAllEqual(output, expected_output)

  def test_position_sensitive_with_global_pool_false_and_single_bin(self):
    num_spatial_bins = [1, 1]
    image_shape = [2, 3, 3, 4]
    crop_size = [1, 1]

    images = tf.random_uniform(image_shape)
    boxes = tf.random_uniform((2, 3, 4))
    # box_ind = tf.constant([0, 0, 0, 1, 1, 1], dtype=tf.int32)

    # Since single_bin is used and crop_size = [1, 1] (i.e., no crop resize),
    # the outputs are the same whatever the global_pool value is.
    ps_crop_and_pool = ops.batch_position_sensitive_crop_regions(
        images, boxes, crop_size, num_spatial_bins, global_pool=True)
    ps_crop = ops.batch_position_sensitive_crop_regions(
        images, boxes, crop_size, num_spatial_bins, global_pool=False)

    with self.test_session() as sess:
      pooled_output, unpooled_output = sess.run((ps_crop_and_pool, ps_crop))
      self.assertAllClose(pooled_output, unpooled_output)
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109


class ReframeBoxMasksToImageMasksTest(tf.test.TestCase):

  def testZeroImageOnEmptyMask(self):
    box_masks = tf.constant([[[0, 0],
                              [0, 0]]], dtype=tf.float32)
    boxes = tf.constant([[0.0, 0.0, 1.0, 1.0]], dtype=tf.float32)
    image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes,
                                                       image_height=4,
                                                       image_width=4)
    np_expected_image_masks = np.array([[[0, 0, 0, 0],
                                         [0, 0, 0, 0],
                                         [0, 0, 0, 0],
                                         [0, 0, 0, 0]]], dtype=np.float32)
    with self.test_session() as sess:
      np_image_masks = sess.run(image_masks)
      self.assertAllClose(np_image_masks, np_expected_image_masks)

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
  def testZeroBoxMasks(self):
    box_masks = tf.zeros([0, 3, 3], dtype=tf.float32)
    boxes = tf.zeros([0, 4], dtype=tf.float32)
    image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes,
                                                       image_height=4,
                                                       image_width=4)
    with self.test_session() as sess:
      np_image_masks = sess.run(image_masks)
      self.assertAllEqual(np_image_masks.shape, np.array([0, 4, 4]))

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
  def testMaskIsCenteredInImageWhenBoxIsCentered(self):
    box_masks = tf.constant([[[1, 1],
                              [1, 1]]], dtype=tf.float32)
    boxes = tf.constant([[0.25, 0.25, 0.75, 0.75]], dtype=tf.float32)
    image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes,
                                                       image_height=4,
                                                       image_width=4)
    np_expected_image_masks = np.array([[[0, 0, 0, 0],
                                         [0, 1, 1, 0],
                                         [0, 1, 1, 0],
                                         [0, 0, 0, 0]]], dtype=np.float32)
    with self.test_session() as sess:
      np_image_masks = sess.run(image_masks)
      self.assertAllClose(np_image_masks, np_expected_image_masks)

  def testMaskOffCenterRemainsOffCenterInImage(self):
    box_masks = tf.constant([[[1, 0],
                              [0, 1]]], dtype=tf.float32)
    boxes = tf.constant([[0.25, 0.5, 0.75, 1.0]], dtype=tf.float32)
    image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes,
                                                       image_height=4,
                                                       image_width=4)
    np_expected_image_masks = np.array([[[0, 0, 0, 0],
                                         [0, 0, 0.6111111, 0.16666669],
                                         [0, 0, 0.3888889, 0.83333337],
                                         [0, 0, 0, 0]]], dtype=np.float32)
    with self.test_session() as sess:
      np_image_masks = sess.run(image_masks)
      self.assertAllClose(np_image_masks, np_expected_image_masks)


1151
1152
1153
1154
1155
1156
1157
1158
class MergeBoxesWithMultipleLabelsTest(tf.test.TestCase):

  def testMergeBoxesWithMultipleLabels(self):
    boxes = tf.constant(
        [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75],
         [0.25, 0.25, 0.75, 0.75]],
        dtype=tf.float32)
    class_indices = tf.constant([0, 4, 2], dtype=tf.int32)
1159
    class_confidences = tf.constant([0.8, 0.2, 0.1], dtype=tf.float32)
1160
    num_classes = 5
1161
1162
1163
    merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
        ops.merge_boxes_with_multiple_labels(
            boxes, class_indices, class_confidences, num_classes))
1164
1165
1166
1167
    expected_merged_boxes = np.array(
        [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype=np.float32)
    expected_merged_classes = np.array(
        [[1, 0, 1, 0, 0], [0, 0, 0, 0, 1]], dtype=np.int32)
1168
1169
    expected_merged_confidences = np.array(
        [[0.8, 0, 0.1, 0, 0], [0, 0, 0, 0, 0.2]], dtype=np.float32)
1170
1171
    expected_merged_box_indices = np.array([0, 1], dtype=np.int32)
    with self.test_session() as sess:
1172
1173
1174
1175
      (np_merged_boxes, np_merged_classes, np_merged_confidences,
       np_merged_box_indices) = sess.run(
           [merged_boxes, merged_classes, merged_confidences,
            merged_box_indices])
1176
1177
      self.assertAllClose(np_merged_boxes, expected_merged_boxes)
      self.assertAllClose(np_merged_classes, expected_merged_classes)
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
      self.assertAllClose(np_merged_confidences, expected_merged_confidences)
      self.assertAllClose(np_merged_box_indices, expected_merged_box_indices)

  def testMergeBoxesWithMultipleLabelsCornerCase(self):
    boxes = tf.constant(
        [[0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1],
         [1, 1, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [0, 0, 1, 1]],
        dtype=tf.float32)
    class_indices = tf.constant([0, 1, 2, 3, 2, 1, 0, 3], dtype=tf.int32)
    class_confidences = tf.constant([0.1, 0.9, 0.2, 0.8, 0.3, 0.7, 0.4, 0.6],
                                    dtype=tf.float32)
    num_classes = 4
    merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
        ops.merge_boxes_with_multiple_labels(
            boxes, class_indices, class_confidences, num_classes))
    expected_merged_boxes = np.array(
        [[0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]],
        dtype=np.float32)
    expected_merged_classes = np.array(
        [[1, 0, 0, 1], [1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]],
        dtype=np.int32)
    expected_merged_confidences = np.array(
        [[0.1, 0, 0, 0.6], [0.4, 0.9, 0, 0],
         [0, 0.7, 0.2, 0], [0, 0, 0.3, 0.8]], dtype=np.float32)
    expected_merged_box_indices = np.array([0, 1, 2, 3], dtype=np.int32)
    with self.test_session() as sess:
      (np_merged_boxes, np_merged_classes, np_merged_confidences,
       np_merged_box_indices) = sess.run(
           [merged_boxes, merged_classes, merged_confidences,
            merged_box_indices])
      self.assertAllClose(np_merged_boxes, expected_merged_boxes)
      self.assertAllClose(np_merged_classes, expected_merged_classes)
      self.assertAllClose(np_merged_confidences, expected_merged_confidences)
1211
1212
1213
      self.assertAllClose(np_merged_box_indices, expected_merged_box_indices)

  def testMergeBoxesWithEmptyInputs(self):
1214
1215
1216
    boxes = tf.zeros([0, 4], dtype=tf.float32)
    class_indices = tf.constant([], dtype=tf.int32)
    class_confidences = tf.constant([], dtype=tf.float32)
1217
    num_classes = 5
1218
1219
1220
    merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
        ops.merge_boxes_with_multiple_labels(
            boxes, class_indices, class_confidences, num_classes))
1221
    with self.test_session() as sess:
1222
1223
1224
1225
      (np_merged_boxes, np_merged_classes, np_merged_confidences,
       np_merged_box_indices) = sess.run(
           [merged_boxes, merged_classes, merged_confidences,
            merged_box_indices])
1226
1227
      self.assertAllEqual(np_merged_boxes.shape, [0, 4])
      self.assertAllEqual(np_merged_classes.shape, [0, 5])
1228
      self.assertAllEqual(np_merged_confidences.shape, [0, 5])
1229
1230
      self.assertAllEqual(np_merged_box_indices.shape, [0])

1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
  def testMergeBoxesWithMultipleLabelsUsesInt64(self):
    boxes = tf.constant(
        [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75],
         [0.25, 0.25, 0.75, 0.75]],
        dtype=tf.float32)
    class_indices = tf.constant([0, 4, 2], dtype=tf.int32)
    class_confidences = tf.constant([0.8, 0.2, 0.1], dtype=tf.float32)
    num_classes = 5
    ops.merge_boxes_with_multiple_labels(
        boxes, class_indices, class_confidences, num_classes)

    graph = tf.get_default_graph()

    def assert_dtype_is_int64(op_name):
      op = graph.get_operation_by_name(op_name)
      self.assertEqual(op.get_attr('dtype'), tf.int64)

    def assert_t_is_int64(op_name):
      op = graph.get_operation_by_name(op_name)
      self.assertEqual(op.get_attr('T'), tf.int64)

    assert_dtype_is_int64('map/TensorArray')
    assert_dtype_is_int64('map/TensorArray_1')
    assert_dtype_is_int64('map/while/TensorArrayReadV3')
    assert_t_is_int64('map/while/TensorArrayWrite/TensorArrayWriteV3')
    assert_t_is_int64(
        'map/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3')
    assert_dtype_is_int64('map/TensorArrayStack/TensorArrayGatherV3')

1260

1261
1262
class NearestNeighborUpsamplingTest(test_case.TestCase):

1263
  def test_upsampling_with_single_scale(self):
1264
1265
1266

    def graph_fn(inputs):
      custom_op_output = ops.nearest_neighbor_upsampling(inputs, scale=2)
1267
1268
1269
1270
1271
1272
1273
1274
1275
      return custom_op_output
    inputs = np.reshape(np.arange(4).astype(np.float32), [1, 2, 2, 1])
    custom_op_output = self.execute(graph_fn, [inputs])

    expected_output = [[[[0], [0], [1], [1]],
                        [[0], [0], [1], [1]],
                        [[2], [2], [3], [3]],
                        [[2], [2], [3], [3]]]]
    self.assertAllClose(custom_op_output, expected_output)
1276

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
  def test_upsampling_with_separate_height_width_scales(self):

    def graph_fn(inputs):
      custom_op_output = ops.nearest_neighbor_upsampling(inputs,
                                                         height_scale=2,
                                                         width_scale=3)
      return custom_op_output
    inputs = np.reshape(np.arange(4).astype(np.float32), [1, 2, 2, 1])
    custom_op_output = self.execute(graph_fn, [inputs])

    expected_output = [[[[0], [0], [0], [1], [1], [1]],
                        [[0], [0], [0], [1], [1], [1]],
                        [[2], [2], [2], [3], [3], [3]],
                        [[2], [2], [2], [3], [3], [3]]]]
    self.assertAllClose(custom_op_output, expected_output)

1293

1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
class MatmulGatherOnZerothAxis(test_case.TestCase):

  def test_gather_2d(self):

    def graph_fn(params, indices):
      return ops.matmul_gather_on_zeroth_axis(params, indices)

    params = np.array([[1, 2, 3, 4],
                       [5, 6, 7, 8],
                       [9, 10, 11, 12],
                       [0, 1, 0, 0]], dtype=np.float32)
1305
    indices = np.array([2, 2, 1], dtype=np.int32)
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
    expected_output = np.array([[9, 10, 11, 12], [9, 10, 11, 12], [5, 6, 7, 8]])
    gather_output = self.execute(graph_fn, [params, indices])
    self.assertAllClose(gather_output, expected_output)

  def test_gather_3d(self):

    def graph_fn(params, indices):
      return ops.matmul_gather_on_zeroth_axis(params, indices)

    params = np.array([[[1, 2], [3, 4]],
                       [[5, 6], [7, 8]],
                       [[9, 10], [11, 12]],
                       [[0, 1], [0, 0]]], dtype=np.float32)
1319
    indices = np.array([0, 3, 1], dtype=np.int32)
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
    expected_output = np.array([[[1, 2], [3, 4]],
                                [[0, 1], [0, 0]],
                                [[5, 6], [7, 8]]])
    gather_output = self.execute(graph_fn, [params, indices])
    self.assertAllClose(gather_output, expected_output)

  def test_gather_with_many_indices(self):

    def graph_fn(params, indices):
      return ops.matmul_gather_on_zeroth_axis(params, indices)

    params = np.array([[1, 2, 3, 4],
                       [5, 6, 7, 8],
                       [9, 10, 11, 12],
                       [0, 1, 0, 0]], dtype=np.float32)
1335
    indices = np.array([0, 0, 0, 0, 0, 0], dtype=np.int32)
1336
1337
1338
1339
    expected_output = np.array(6*[[1, 2, 3, 4]])
    gather_output = self.execute(graph_fn, [params, indices])
    self.assertAllClose(gather_output, expected_output)

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
  def test_gather_with_dynamic_shape_input(self):
    params_placeholder = tf.placeholder(tf.float32, shape=[None, 4])
    indices_placeholder = tf.placeholder(tf.int32, shape=[None])
    gather_result = ops.matmul_gather_on_zeroth_axis(
        params_placeholder, indices_placeholder)
    params = np.array([[1, 2, 3, 4],
                       [5, 6, 7, 8],
                       [9, 10, 11, 12],
                       [0, 1, 0, 0]], dtype=np.float32)
    indices = np.array([0, 0, 0, 0, 0, 0])
    expected_output = np.array(6*[[1, 2, 3, 4]])
    with self.test_session() as sess:
      gather_output = sess.run(gather_result, feed_dict={
          params_placeholder: params, indices_placeholder: indices})
      self.assertAllClose(gather_output, expected_output)
1355

1356

1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
class FpnFeatureLevelsTest(test_case.TestCase):

  def test_correct_fpn_levels(self):
    image_size = 640
    pretraininig_image_size = 224
    image_ratio = image_size * 1.0 / pretraininig_image_size
    boxes = np.array(
        [
            [
                [0, 0, 111, 111],  # Level 0.
                [0, 0, 113, 113],  # Level 1.
                [0, 0, 223, 223],  # Level 1.
                [0, 0, 225, 225],  # Level 2.
                [0, 0, 449, 449]   # Level 3.
            ],
        ],
        dtype=np.float32) / image_size

    def graph_fn(boxes):
      return ops.fpn_feature_levels(
          num_levels=5, unit_scale_index=2, image_ratio=image_ratio,
          boxes=boxes)

    levels = self.execute(graph_fn, [boxes])
    self.assertAllEqual([[0, 1, 1, 2, 3]], levels)
1382
1383


1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
class TestBfloat16ToFloat32(test_case.TestCase):

  def test_convert_list(self):
    var_list = [
        tf.constant([1.], dtype=tf.bfloat16),
        tf.constant([2], dtype=tf.int32)
    ]
    casted_var_list = ops.bfloat16_to_float32_nested(var_list)
    self.assertEqual(casted_var_list[0].dtype, tf.float32)
    self.assertEqual(casted_var_list[1].dtype, tf.int32)

  def test_convert_tensor_dict(self):
    tensor_dict = {
        'key1': tf.constant([1.], dtype=tf.bfloat16),
        'key2': [
            tf.constant([0.5], dtype=tf.bfloat16),
            tf.constant([7], dtype=tf.int32),
        ],
        'key3': tf.constant([2], dtype=tf.uint8),
    }
    tensor_dict = ops.bfloat16_to_float32_nested(tensor_dict)

    self.assertEqual(tensor_dict['key1'].dtype, tf.float32)
    self.assertEqual(tensor_dict['key2'][0].dtype, tf.float32)
    self.assertEqual(tensor_dict['key2'][1].dtype, tf.int32)
    self.assertEqual(tensor_dict['key3'].dtype, tf.uint8)


class TestGatherWithPaddingValues(test_case.TestCase):

  def test_gather_with_padding_values(self):
    indices = tf.constant([1, -1, 0, -1])
    input_tensor = tf.constant([[0, 0, 0.1, 0.1], [0, 0, 0.2, 0.2]],
                               dtype=tf.float32)
    expected_gathered_tensor = [
        [0, 0, 0.2, 0.2],
        [0, 0, 0, 0],
        [0, 0, 0.1, 0.1],
        [0, 0, 0, 0],
    ]
    gathered_tensor = ops.gather_with_padding_values(
        input_tensor,
        indices=indices,
        padding_value=tf.zeros_like(input_tensor[0]))
    self.assertEqual(gathered_tensor.dtype, tf.float32)
    with self.test_session():
      gathered_tensor_np = gathered_tensor.eval()
    self.assertAllClose(expected_gathered_tensor, gathered_tensor_np)


1434
1435
1436



1437
1438


1439
1440
if __name__ == '__main__':
  tf.test.main()