exporter.py 22.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Functions to export object detection inference graph."""
import os
Vivek Rathod's avatar
Vivek Rathod committed
18
import tempfile
19
import tensorflow as tf
20
from tensorflow.core.protobuf import saver_pb2
21
from tensorflow.python.tools import freeze_graph  # pylint: disable=g-direct-tensorflow-import
22
from object_detection.builders import graph_rewriter_builder
23
24
25
from object_detection.builders import model_builder
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
26
from object_detection.utils import config_util
27
from object_detection.utils import shape_utils
28

29
30
31
32
33
34
35
36
37
# pylint: disable=g-import-not-at-top
try:
  from tensorflow.contrib import slim
  from tensorflow.contrib import tfprof as contrib_tfprof
  from tensorflow.contrib.quantize.python import graph_matcher
except ImportError:
  # TF 2.0 doesn't ship with contrib.
  pass
# pylint: enable=g-import-not-at-top
38

39
freeze_graph_with_def_protos = freeze_graph.freeze_graph_with_def_protos
40
41


42
43
44
45
46
47
48
49
def rewrite_nn_resize_op(is_quantized=False):
  """Replaces a custom nearest-neighbor resize op with the Tensorflow version.

  Some graphs use this custom version for TPU-compatibility.

  Args:
    is_quantized: True if the default graph is quantized.
  """
50
  def remove_nn():
51
    """Remove nearest neighbor upsampling structures and replace with TF op."""
52
53
54
55
56
57
58
59
    input_pattern = graph_matcher.OpTypePattern(
        'FakeQuantWithMinMaxVars' if is_quantized else '*')
    stack_1_pattern = graph_matcher.OpTypePattern(
        'Pack', inputs=[input_pattern, input_pattern], ordered_inputs=False)
    stack_2_pattern = graph_matcher.OpTypePattern(
        'Pack', inputs=[stack_1_pattern, stack_1_pattern], ordered_inputs=False)
    reshape_pattern = graph_matcher.OpTypePattern(
        'Reshape', inputs=[stack_2_pattern, 'Const'], ordered_inputs=False)
60
    consumer_pattern1 = graph_matcher.OpTypePattern(
61
62
        'Add|AddV2|Max|Mul', inputs=[reshape_pattern, '*'],
        ordered_inputs=False)
63
64
65
    consumer_pattern2 = graph_matcher.OpTypePattern(
        'StridedSlice', inputs=[reshape_pattern, '*', '*', '*'],
        ordered_inputs=False)
66

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    def replace_matches(consumer_pattern):
      """Search for nearest neighbor pattern and replace with TF op."""
      match_counter = 0
      matcher = graph_matcher.GraphMatcher(consumer_pattern)
      for match in matcher.match_graph(tf.get_default_graph()):
        match_counter += 1
        projection_op = match.get_op(input_pattern)
        reshape_op = match.get_op(reshape_pattern)
        consumer_op = match.get_op(consumer_pattern)
        nn_resize = tf.image.resize_nearest_neighbor(
            projection_op.outputs[0],
            reshape_op.outputs[0].shape.dims[1:3],
            align_corners=False,
            name=os.path.split(reshape_op.name)[0] + '/resize_nearest_neighbor')

        for index, op_input in enumerate(consumer_op.inputs):
          if op_input == reshape_op.outputs[0]:
            consumer_op._update_input(index, nn_resize)  # pylint: disable=protected-access
            break

      return match_counter

    match_counter = replace_matches(consumer_pattern1)
    match_counter += replace_matches(consumer_pattern2)
91
92
93
94
95
96
97
98
99
100
101

    tf.logging.info('Found and fixed {} matches'.format(match_counter))
    return match_counter

  # Applying twice because both inputs to Add could be NN pattern
  total_removals = 0
  while remove_nn():
    total_removals += 1
    # This number is chosen based on the nas-fpn architecture.
    if total_removals > 4:
      raise ValueError('Graph removal encountered a infinite loop.')
102
103


Vivek Rathod's avatar
Vivek Rathod committed
104
105
def replace_variable_values_with_moving_averages(graph,
                                                 current_checkpoint_file,
106
107
                                                 new_checkpoint_file,
                                                 no_ema_collection=None):
Vivek Rathod's avatar
Vivek Rathod committed
108
  """Replaces variable values in the checkpoint with their moving averages.
109

Vivek Rathod's avatar
Vivek Rathod committed
110
111
112
113
114
115
116
117
118
  If the current checkpoint has shadow variables maintaining moving averages of
  the variables defined in the graph, this function generates a new checkpoint
  where the variables contain the values of their moving averages.

  Args:
    graph: a tf.Graph object.
    current_checkpoint_file: a checkpoint containing both original variables and
      their moving averages.
    new_checkpoint_file: file path to write a new checkpoint.
119
120
    no_ema_collection: A list of namescope substrings to match the variables
      to eliminate EMA.
Vivek Rathod's avatar
Vivek Rathod committed
121
122
123
124
  """
  with graph.as_default():
    variable_averages = tf.train.ExponentialMovingAverage(0.0)
    ema_variables_to_restore = variable_averages.variables_to_restore()
125
126
    ema_variables_to_restore = config_util.remove_unecessary_ema(
        ema_variables_to_restore, no_ema_collection)
Vivek Rathod's avatar
Vivek Rathod committed
127
128
129
130
131
132
133
134
135
136
137
138
139
    with tf.Session() as sess:
      read_saver = tf.train.Saver(ema_variables_to_restore)
      read_saver.restore(sess, current_checkpoint_file)
      write_saver = tf.train.Saver()
      write_saver.save(sess, new_checkpoint_file)


def _image_tensor_input_placeholder(input_shape=None):
  """Returns input placeholder and a 4-D uint8 image tensor."""
  if input_shape is None:
    input_shape = (None, None, None, 3)
  input_tensor = tf.placeholder(
      dtype=tf.uint8, shape=input_shape, name='image_tensor')
Derek Chow's avatar
Derek Chow committed
140
  return input_tensor, input_tensor
141

142

143
def _tf_example_input_placeholder(input_shape=None):
Derek Chow's avatar
Derek Chow committed
144
145
  """Returns input that accepts a batch of strings with tf examples.

146
147
148
  Args:
    input_shape: the shape to resize the output decoded images to (optional).

Derek Chow's avatar
Derek Chow committed
149
  Returns:
Vivek Rathod's avatar
Vivek Rathod committed
150
    a tuple of input placeholder and the output decoded images.
Derek Chow's avatar
Derek Chow committed
151
  """
152
153
154
155
156
157
  batch_tf_example_placeholder = tf.placeholder(
      tf.string, shape=[None], name='tf_example')
  def decode(tf_example_string_tensor):
    tensor_dict = tf_example_decoder.TfExampleDecoder().decode(
        tf_example_string_tensor)
    image_tensor = tensor_dict[fields.InputDataFields.image]
158
159
    if input_shape is not None:
      image_tensor = tf.image.resize(image_tensor, input_shape[1:3])
160
    return image_tensor
Derek Chow's avatar
Derek Chow committed
161
  return (batch_tf_example_placeholder,
162
163
164
165
166
167
          shape_utils.static_or_dynamic_map_fn(
              decode,
              elems=batch_tf_example_placeholder,
              dtype=tf.uint8,
              parallel_iterations=32,
              back_prop=False))
168
169


170
def _encoded_image_string_tensor_input_placeholder(input_shape=None):
Derek Chow's avatar
Derek Chow committed
171
172
  """Returns input that accepts a batch of PNG or JPEG strings.

173
174
175
  Args:
    input_shape: the shape to resize the output decoded images to (optional).

Derek Chow's avatar
Derek Chow committed
176
  Returns:
Vivek Rathod's avatar
Vivek Rathod committed
177
    a tuple of input placeholder and the output decoded images.
Derek Chow's avatar
Derek Chow committed
178
  """
179
180
181
182
183
184
185
186
  batch_image_str_placeholder = tf.placeholder(
      dtype=tf.string,
      shape=[None],
      name='encoded_image_string_tensor')
  def decode(encoded_image_string_tensor):
    image_tensor = tf.image.decode_image(encoded_image_string_tensor,
                                         channels=3)
    image_tensor.set_shape((None, None, 3))
187
188
    if input_shape is not None:
      image_tensor = tf.image.resize(image_tensor, input_shape[1:3])
189
    return image_tensor
Derek Chow's avatar
Derek Chow committed
190
191
192
193
194
195
196
  return (batch_image_str_placeholder,
          tf.map_fn(
              decode,
              elems=batch_image_str_placeholder,
              dtype=tf.uint8,
              parallel_iterations=32,
              back_prop=False))
197
198


199
input_placeholder_fn_map = {
200
201
202
    'image_tensor': _image_tensor_input_placeholder,
    'encoded_image_string_tensor':
    _encoded_image_string_tensor_input_placeholder,
203
204
205
206
    'tf_example': _tf_example_input_placeholder,
}


207
208
def add_output_tensor_nodes(postprocessed_tensors,
                            output_collection_name='inference_op'):
209
210
211
212
213
214
215
216
  """Adds output nodes for detection boxes and scores.

  Adds the following nodes for output tensors -
    * num_detections: float32 tensor of shape [batch_size].
    * detection_boxes: float32 tensor of shape [batch_size, num_boxes, 4]
      containing detected boxes.
    * detection_scores: float32 tensor of shape [batch_size, num_boxes]
      containing scores for the detected boxes.
217
218
219
    * detection_multiclass_scores: (Optional) float32 tensor of shape
      [batch_size, num_boxes, num_classes_with_background] for containing class
      score distribution for detected boxes including background if any.
pkulzc's avatar
pkulzc committed
220
221
222
223
    * detection_features: (Optional) float32 tensor of shape
      [batch, num_boxes, roi_height, roi_width, depth]
      containing classifier features
      for each detected box
224
225
    * detection_classes: float32 tensor of shape [batch_size, num_boxes]
      containing class predictions for the detected boxes.
226
227
228
    * detection_keypoints: (Optional) float32 tensor of shape
      [batch_size, num_boxes, num_keypoints, 2] containing keypoints for each
      detection box.
229
230
231
    * detection_masks: (Optional) float32 tensor of shape
      [batch_size, num_boxes, mask_height, mask_width] containing masks for each
      detection box.
232
233
234
235
236

  Args:
    postprocessed_tensors: a dictionary containing the following fields
      'detection_boxes': [batch, max_detections, 4]
      'detection_scores': [batch, max_detections]
237
238
      'detection_multiclass_scores': [batch, max_detections,
        num_classes_with_background]
pkulzc's avatar
pkulzc committed
239
      'detection_features': [batch, num_boxes, roi_height, roi_width, depth]
240
      'detection_classes': [batch, max_detections]
241
242
      'detection_masks': [batch, max_detections, mask_height, mask_width]
        (optional).
243
244
      'detection_keypoints': [batch, max_detections, num_keypoints, 2]
        (optional).
245
      'num_detections': [batch]
246
    output_collection_name: Name of collection to add output tensors to.
247
248
249

  Returns:
    A tensor dict containing the added output tensor nodes.
250
  """
251
  detection_fields = fields.DetectionResultFields
252
  label_id_offset = 1
253
254
  boxes = postprocessed_tensors.get(detection_fields.detection_boxes)
  scores = postprocessed_tensors.get(detection_fields.detection_scores)
255
256
  multiclass_scores = postprocessed_tensors.get(
      detection_fields.detection_multiclass_scores)
pkulzc's avatar
pkulzc committed
257
258
  box_classifier_features = postprocessed_tensors.get(
      detection_fields.detection_features)
259
260
  raw_boxes = postprocessed_tensors.get(detection_fields.raw_detection_boxes)
  raw_scores = postprocessed_tensors.get(detection_fields.raw_detection_scores)
261
262
  classes = postprocessed_tensors.get(
      detection_fields.detection_classes) + label_id_offset
263
  keypoints = postprocessed_tensors.get(detection_fields.detection_keypoints)
264
265
  masks = postprocessed_tensors.get(detection_fields.detection_masks)
  num_detections = postprocessed_tensors.get(detection_fields.num_detections)
266
  outputs = {}
267
268
269
270
  outputs[detection_fields.detection_boxes] = tf.identity(
      boxes, name=detection_fields.detection_boxes)
  outputs[detection_fields.detection_scores] = tf.identity(
      scores, name=detection_fields.detection_scores)
271
272
273
  if multiclass_scores is not None:
    outputs[detection_fields.detection_multiclass_scores] = tf.identity(
        multiclass_scores, name=detection_fields.detection_multiclass_scores)
pkulzc's avatar
pkulzc committed
274
275
276
277
  if box_classifier_features is not None:
    outputs[detection_fields.detection_features] = tf.identity(
        box_classifier_features,
        name=detection_fields.detection_features)
278
279
280
281
  outputs[detection_fields.detection_classes] = tf.identity(
      classes, name=detection_fields.detection_classes)
  outputs[detection_fields.num_detections] = tf.identity(
      num_detections, name=detection_fields.num_detections)
282
283
284
285
286
287
  if raw_boxes is not None:
    outputs[detection_fields.raw_detection_boxes] = tf.identity(
        raw_boxes, name=detection_fields.raw_detection_boxes)
  if raw_scores is not None:
    outputs[detection_fields.raw_detection_scores] = tf.identity(
        raw_scores, name=detection_fields.raw_detection_scores)
288
289
290
  if keypoints is not None:
    outputs[detection_fields.detection_keypoints] = tf.identity(
        keypoints, name=detection_fields.detection_keypoints)
291
  if masks is not None:
292
293
    outputs[detection_fields.detection_masks] = tf.identity(
        masks, name=detection_fields.detection_masks)
294
295
  for output_key in outputs:
    tf.add_to_collection(output_collection_name, outputs[output_key])
296

297
  return outputs
298
299


300
301
302
303
def write_saved_model(saved_model_path,
                      frozen_graph_def,
                      inputs,
                      outputs):
304
305
306
307
308
309
310
311
312
  """Writes SavedModel to disk.

  If checkpoint_path is not None bakes the weights into the graph thereby
  eliminating the need of checkpoint files during inference. If the model
  was trained with moving averages, setting use_moving_averages to true
  restores the moving averages, otherwise the original set of variables
  is restored.

  Args:
313
314
    saved_model_path: Path to write SavedModel.
    frozen_graph_def: tf.GraphDef holding frozen graph.
315
    inputs: The input placeholder tensor.
316
317
318
    outputs: A tensor dictionary containing the outputs of a DetectionModel.
  """
  with tf.Graph().as_default():
319
    with tf.Session() as sess:
320

321
      tf.import_graph_def(frozen_graph_def, name='')
322

323
      builder = tf.saved_model.builder.SavedModelBuilder(saved_model_path)
324
325
326
327
328
329
330
331
332
333
334

      tensor_info_inputs = {
          'inputs': tf.saved_model.utils.build_tensor_info(inputs)}
      tensor_info_outputs = {}
      for k, v in outputs.items():
        tensor_info_outputs[k] = tf.saved_model.utils.build_tensor_info(v)

      detection_signature = (
          tf.saved_model.signature_def_utils.build_signature_def(
              inputs=tensor_info_inputs,
              outputs=tensor_info_outputs,
335
336
              method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME
          ))
337
338

      builder.add_meta_graph_and_variables(
339
340
          sess,
          [tf.saved_model.tag_constants.SERVING],
341
          signature_def_map={
342
343
              tf.saved_model.signature_constants
              .DEFAULT_SERVING_SIGNATURE_DEF_KEY:
344
345
346
347
348
349
                  detection_signature,
          },
      )
      builder.save()


350
351
352
353
354
def write_graph_and_checkpoint(inference_graph_def,
                               model_path,
                               input_saver_def,
                               trained_checkpoint_prefix):
  """Writes the graph and the checkpoint into disk."""
355
356
357
358
  for node in inference_graph_def.node:
    node.device = ''
  with tf.Graph().as_default():
    tf.import_graph_def(inference_graph_def, name='')
359
360
361
    with tf.Session() as sess:
      saver = tf.train.Saver(
          saver_def=input_saver_def, save_relative_paths=True)
362
363
364
365
      saver.restore(sess, trained_checkpoint_prefix)
      saver.save(sess, model_path)


366
367
def _get_outputs_from_inputs(input_tensors, detection_model,
                             output_collection_name):
368
  inputs = tf.cast(input_tensors, dtype=tf.float32)
369
370
371
372
373
  preprocessed_inputs, true_image_shapes = detection_model.preprocess(inputs)
  output_tensors = detection_model.predict(
      preprocessed_inputs, true_image_shapes)
  postprocessed_tensors = detection_model.postprocess(
      output_tensors, true_image_shapes)
374
375
  return add_output_tensor_nodes(postprocessed_tensors,
                                 output_collection_name)
376
377


378
379
def build_detection_graph(input_type, detection_model, input_shape,
                          output_collection_name, graph_hook_fn):
380
381
382
383
384
  """Build the detection graph."""
  if input_type not in input_placeholder_fn_map:
    raise ValueError('Unknown input type: {}'.format(input_type))
  placeholder_args = {}
  if input_shape is not None:
385
386
387
388
389
    if (input_type != 'image_tensor' and
        input_type != 'encoded_image_string_tensor' and
        input_type != 'tf_example'):
      raise ValueError('Can only specify input shape for `image_tensor`, '
                       '`encoded_image_string_tensor`, or `tf_example` '
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
                       'inputs.')
    placeholder_args['input_shape'] = input_shape
  placeholder_tensor, input_tensors = input_placeholder_fn_map[input_type](
      **placeholder_args)
  outputs = _get_outputs_from_inputs(
      input_tensors=input_tensors,
      detection_model=detection_model,
      output_collection_name=output_collection_name)

  # Add global step to the graph.
  slim.get_or_create_global_step()

  if graph_hook_fn: graph_hook_fn()

  return outputs, placeholder_tensor


407
408
409
def _export_inference_graph(input_type,
                            detection_model,
                            use_moving_averages,
410
411
                            trained_checkpoint_prefix,
                            output_directory,
Vivek Rathod's avatar
Vivek Rathod committed
412
413
                            additional_output_tensor_names=None,
                            input_shape=None,
414
                            output_collection_name='inference_op',
415
                            graph_hook_fn=None,
416
417
                            write_inference_graph=False,
                            temp_checkpoint_prefix=''):
418
  """Export helper."""
419
420
421
422
423
424
  tf.gfile.MakeDirs(output_directory)
  frozen_graph_path = os.path.join(output_directory,
                                   'frozen_inference_graph.pb')
  saved_model_path = os.path.join(output_directory, 'saved_model')
  model_path = os.path.join(output_directory, 'model.ckpt')

425
  outputs, placeholder_tensor = build_detection_graph(
426
427
428
429
430
      input_type=input_type,
      detection_model=detection_model,
      input_shape=input_shape,
      output_collection_name=output_collection_name,
      graph_hook_fn=graph_hook_fn)
431

432
  profile_inference_graph(tf.get_default_graph())
433
  saver_kwargs = {}
434
  if use_moving_averages:
435
436
437
438
439
440
441
    if not temp_checkpoint_prefix:
      # This check is to be compatible with both version of SaverDef.
      if os.path.isfile(trained_checkpoint_prefix):
        saver_kwargs['write_version'] = saver_pb2.SaverDef.V1
        temp_checkpoint_prefix = tempfile.NamedTemporaryFile().name
      else:
        temp_checkpoint_prefix = tempfile.mkdtemp()
Vivek Rathod's avatar
Vivek Rathod committed
442
443
    replace_variable_values_with_moving_averages(
        tf.get_default_graph(), trained_checkpoint_prefix,
444
445
        temp_checkpoint_prefix)
    checkpoint_to_use = temp_checkpoint_prefix
446
  else:
Vivek Rathod's avatar
Vivek Rathod committed
447
448
    checkpoint_to_use = trained_checkpoint_prefix

449
  saver = tf.train.Saver(**saver_kwargs)
450
451
  input_saver_def = saver.as_saver_def()

452
  write_graph_and_checkpoint(
453
454
455
      inference_graph_def=tf.get_default_graph().as_graph_def(),
      model_path=model_path,
      input_saver_def=input_saver_def,
Vivek Rathod's avatar
Vivek Rathod committed
456
      trained_checkpoint_prefix=checkpoint_to_use)
457
458
459
460
461
462
  if write_inference_graph:
    inference_graph_def = tf.get_default_graph().as_graph_def()
    inference_graph_path = os.path.join(output_directory,
                                        'inference_graph.pbtxt')
    for node in inference_graph_def.node:
      node.device = ''
463
    with tf.gfile.GFile(inference_graph_path, 'wb') as f:
464
      f.write(str(inference_graph_def))
Vivek Rathod's avatar
Vivek Rathod committed
465
466
467
468
469

  if additional_output_tensor_names is not None:
    output_node_names = ','.join(outputs.keys()+additional_output_tensor_names)
  else:
    output_node_names = ','.join(outputs.keys())
470

471
  frozen_graph_def = freeze_graph.freeze_graph_with_def_protos(
472
473
      input_graph_def=tf.get_default_graph().as_graph_def(),
      input_saver_def=input_saver_def,
Vivek Rathod's avatar
Vivek Rathod committed
474
475
      input_checkpoint=checkpoint_to_use,
      output_node_names=output_node_names,
476
477
      restore_op_name='save/restore_all',
      filename_tensor_name='save/Const:0',
478
      output_graph=frozen_graph_path,
479
480
      clear_devices=True,
      initializer_nodes='')
481

482
483
  write_saved_model(saved_model_path, frozen_graph_def,
                    placeholder_tensor, outputs)
484
485


486
487
488
489
def export_inference_graph(input_type,
                           pipeline_config,
                           trained_checkpoint_prefix,
                           output_directory,
Vivek Rathod's avatar
Vivek Rathod committed
490
491
                           input_shape=None,
                           output_collection_name='inference_op',
492
493
                           additional_output_tensor_names=None,
                           write_inference_graph=False):
494
495
496
  """Exports inference graph for the model specified in the pipeline config.

  Args:
497
498
    input_type: Type of input for the graph. Can be one of ['image_tensor',
      'encoded_image_string_tensor', 'tf_example'].
499
    pipeline_config: pipeline_pb2.TrainAndEvalPipelineConfig proto.
500
501
    trained_checkpoint_prefix: Path to the trained checkpoint file.
    output_directory: Path to write outputs.
Vivek Rathod's avatar
Vivek Rathod committed
502
503
    input_shape: Sets a fixed shape for an `image_tensor` input. If not
      specified, will default to [None, None, None, 3].
504
505
    output_collection_name: Name of collection to add output tensors to.
      If None, does not add output tensors to a collection.
Vivek Rathod's avatar
Vivek Rathod committed
506
    additional_output_tensor_names: list of additional output
507
      tensors to include in the frozen graph.
508
    write_inference_graph: If true, writes inference graph to disk.
509
510
511
  """
  detection_model = model_builder.build(pipeline_config.model,
                                        is_training=False)
512
513
514
515
516
  graph_rewriter_fn = None
  if pipeline_config.HasField('graph_rewriter'):
    graph_rewriter_config = pipeline_config.graph_rewriter
    graph_rewriter_fn = graph_rewriter_builder.build(graph_rewriter_config,
                                                     is_training=False)
517
518
519
520
521
522
523
524
525
  _export_inference_graph(
      input_type,
      detection_model,
      pipeline_config.eval_config.use_moving_averages,
      trained_checkpoint_prefix,
      output_directory,
      additional_output_tensor_names,
      input_shape,
      output_collection_name,
526
      graph_hook_fn=graph_rewriter_fn,
527
      write_inference_graph=write_inference_graph)
528
  pipeline_config.eval_config.use_moving_averages = False
529
  config_util.save_pipeline_config(pipeline_config, output_directory)
530
531
532
533
534
535
536
537
538
539
540
541
542
543


def profile_inference_graph(graph):
  """Profiles the inference graph.

  Prints model parameters and computation FLOPs given an inference graph.
  BatchNorms are excluded from the parameter count due to the fact that
  BatchNorms are usually folded. BatchNorm, Initializer, Regularizer
  and BiasAdd are not considered in FLOP count.

  Args:
    graph: the inference graph.
  """
  tfprof_vars_option = (
544
545
      contrib_tfprof.model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS)
  tfprof_flops_option = contrib_tfprof.model_analyzer.FLOAT_OPS_OPTIONS
546
547
548
549
550
551
552
553

  # Batchnorm is usually folded during inference.
  tfprof_vars_option['trim_name_regexes'] = ['.*BatchNorm.*']
  # Initializer and Regularizer are only used in training.
  tfprof_flops_option['trim_name_regexes'] = [
      '.*BatchNorm.*', '.*Initializer.*', '.*Regularizer.*', '.*BiasAdd.*'
  ]

554
555
  contrib_tfprof.model_analyzer.print_model_analysis(
      graph, tfprof_options=tfprof_vars_option)
556

557
558
  contrib_tfprof.model_analyzer.print_model_analysis(
      graph, tfprof_options=tfprof_flops_option)