exporter.py 21.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Functions to export object detection inference graph."""
import os
Vivek Rathod's avatar
Vivek Rathod committed
18
import tempfile
19
import tensorflow as tf
20
from tensorflow.contrib.quantize.python import graph_matcher
21
from tensorflow.core.protobuf import saver_pb2
22
from tensorflow.python.tools import freeze_graph  # pylint: disable=g-direct-tensorflow-import
23
from object_detection.builders import graph_rewriter_builder
24
25
26
from object_detection.builders import model_builder
from object_detection.core import standard_fields as fields
from object_detection.data_decoders import tf_example_decoder
27
from object_detection.utils import config_util
28
from object_detection.utils import shape_utils
29
30
31

slim = tf.contrib.slim

32
freeze_graph_with_def_protos = freeze_graph.freeze_graph_with_def_protos
33
34


35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
def rewrite_nn_resize_op(is_quantized=False):
  """Replaces a custom nearest-neighbor resize op with the Tensorflow version.

  Some graphs use this custom version for TPU-compatibility.

  Args:
    is_quantized: True if the default graph is quantized.
  """
  input_pattern = graph_matcher.OpTypePattern(
      'FakeQuantWithMinMaxVars' if is_quantized else '*')
  reshape_1_pattern = graph_matcher.OpTypePattern(
      'Reshape', inputs=[input_pattern, 'Const'], ordered_inputs=False)
  mul_pattern = graph_matcher.OpTypePattern(
      'Mul', inputs=[reshape_1_pattern, 'Const'], ordered_inputs=False)
  # The quantization script may or may not insert a fake quant op after the
  # Mul. In either case, these min/max vars are not needed once replaced with
  # the TF version of NN resize.
  fake_quant_pattern = graph_matcher.OpTypePattern(
      'FakeQuantWithMinMaxVars',
      inputs=[mul_pattern, 'Identity', 'Identity'],
      ordered_inputs=False)
  reshape_2_pattern = graph_matcher.OpTypePattern(
      'Reshape',
      inputs=[graph_matcher.OneofPattern([fake_quant_pattern, mul_pattern]),
              'Const'],
      ordered_inputs=False)
pkulzc's avatar
pkulzc committed
61
62
63
  add_type_name = 'Add'
  if tf.compat.forward_compatible(2019, 6, 26):
    add_type_name = 'AddV2'
64
  add_pattern = graph_matcher.OpTypePattern(
pkulzc's avatar
pkulzc committed
65
      add_type_name, inputs=[reshape_2_pattern, '*'], ordered_inputs=False)
66
67
68
69
70
71
72
73
74

  matcher = graph_matcher.GraphMatcher(add_pattern)
  for match in matcher.match_graph(tf.get_default_graph()):
    projection_op = match.get_op(input_pattern)
    reshape_2_op = match.get_op(reshape_2_pattern)
    add_op = match.get_op(add_pattern)
    nn_resize = tf.image.resize_nearest_neighbor(
        projection_op.outputs[0],
        add_op.outputs[0].shape.dims[1:3],
75
76
        align_corners=False,
        name=os.path.split(reshape_2_op.name)[0] + '/resize_nearest_neighbor')
77
78
79
80
81
82
83

    for index, op_input in enumerate(add_op.inputs):
      if op_input == reshape_2_op.outputs[0]:
        add_op._update_input(index, nn_resize)  # pylint: disable=protected-access
        break


Vivek Rathod's avatar
Vivek Rathod committed
84
85
86
87
def replace_variable_values_with_moving_averages(graph,
                                                 current_checkpoint_file,
                                                 new_checkpoint_file):
  """Replaces variable values in the checkpoint with their moving averages.
88

Vivek Rathod's avatar
Vivek Rathod committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
  If the current checkpoint has shadow variables maintaining moving averages of
  the variables defined in the graph, this function generates a new checkpoint
  where the variables contain the values of their moving averages.

  Args:
    graph: a tf.Graph object.
    current_checkpoint_file: a checkpoint containing both original variables and
      their moving averages.
    new_checkpoint_file: file path to write a new checkpoint.
  """
  with graph.as_default():
    variable_averages = tf.train.ExponentialMovingAverage(0.0)
    ema_variables_to_restore = variable_averages.variables_to_restore()
    with tf.Session() as sess:
      read_saver = tf.train.Saver(ema_variables_to_restore)
      read_saver.restore(sess, current_checkpoint_file)
      write_saver = tf.train.Saver()
      write_saver.save(sess, new_checkpoint_file)


def _image_tensor_input_placeholder(input_shape=None):
  """Returns input placeholder and a 4-D uint8 image tensor."""
  if input_shape is None:
    input_shape = (None, None, None, 3)
  input_tensor = tf.placeholder(
      dtype=tf.uint8, shape=input_shape, name='image_tensor')
Derek Chow's avatar
Derek Chow committed
115
  return input_tensor, input_tensor
116

117

118
def _tf_example_input_placeholder():
Derek Chow's avatar
Derek Chow committed
119
120
121
  """Returns input that accepts a batch of strings with tf examples.

  Returns:
Vivek Rathod's avatar
Vivek Rathod committed
122
    a tuple of input placeholder and the output decoded images.
Derek Chow's avatar
Derek Chow committed
123
  """
124
125
126
127
128
129
130
  batch_tf_example_placeholder = tf.placeholder(
      tf.string, shape=[None], name='tf_example')
  def decode(tf_example_string_tensor):
    tensor_dict = tf_example_decoder.TfExampleDecoder().decode(
        tf_example_string_tensor)
    image_tensor = tensor_dict[fields.InputDataFields.image]
    return image_tensor
Derek Chow's avatar
Derek Chow committed
131
  return (batch_tf_example_placeholder,
132
133
134
135
136
137
          shape_utils.static_or_dynamic_map_fn(
              decode,
              elems=batch_tf_example_placeholder,
              dtype=tf.uint8,
              parallel_iterations=32,
              back_prop=False))
138
139


140
def _encoded_image_string_tensor_input_placeholder():
Derek Chow's avatar
Derek Chow committed
141
142
143
  """Returns input that accepts a batch of PNG or JPEG strings.

  Returns:
Vivek Rathod's avatar
Vivek Rathod committed
144
    a tuple of input placeholder and the output decoded images.
Derek Chow's avatar
Derek Chow committed
145
  """
146
147
148
149
150
151
152
153
154
  batch_image_str_placeholder = tf.placeholder(
      dtype=tf.string,
      shape=[None],
      name='encoded_image_string_tensor')
  def decode(encoded_image_string_tensor):
    image_tensor = tf.image.decode_image(encoded_image_string_tensor,
                                         channels=3)
    image_tensor.set_shape((None, None, 3))
    return image_tensor
Derek Chow's avatar
Derek Chow committed
155
156
157
158
159
160
161
  return (batch_image_str_placeholder,
          tf.map_fn(
              decode,
              elems=batch_image_str_placeholder,
              dtype=tf.uint8,
              parallel_iterations=32,
              back_prop=False))
162
163


164
input_placeholder_fn_map = {
165
166
167
    'image_tensor': _image_tensor_input_placeholder,
    'encoded_image_string_tensor':
    _encoded_image_string_tensor_input_placeholder,
168
169
170
171
    'tf_example': _tf_example_input_placeholder,
}


172
173
def add_output_tensor_nodes(postprocessed_tensors,
                            output_collection_name='inference_op'):
174
175
176
177
178
179
180
181
  """Adds output nodes for detection boxes and scores.

  Adds the following nodes for output tensors -
    * num_detections: float32 tensor of shape [batch_size].
    * detection_boxes: float32 tensor of shape [batch_size, num_boxes, 4]
      containing detected boxes.
    * detection_scores: float32 tensor of shape [batch_size, num_boxes]
      containing scores for the detected boxes.
182
183
184
    * detection_multiclass_scores: (Optional) float32 tensor of shape
      [batch_size, num_boxes, num_classes_with_background] for containing class
      score distribution for detected boxes including background if any.
pkulzc's avatar
pkulzc committed
185
186
187
188
    * detection_features: (Optional) float32 tensor of shape
      [batch, num_boxes, roi_height, roi_width, depth]
      containing classifier features
      for each detected box
189
190
    * detection_classes: float32 tensor of shape [batch_size, num_boxes]
      containing class predictions for the detected boxes.
191
192
193
    * detection_keypoints: (Optional) float32 tensor of shape
      [batch_size, num_boxes, num_keypoints, 2] containing keypoints for each
      detection box.
194
195
196
    * detection_masks: (Optional) float32 tensor of shape
      [batch_size, num_boxes, mask_height, mask_width] containing masks for each
      detection box.
197
198
199
200
201

  Args:
    postprocessed_tensors: a dictionary containing the following fields
      'detection_boxes': [batch, max_detections, 4]
      'detection_scores': [batch, max_detections]
202
203
      'detection_multiclass_scores': [batch, max_detections,
        num_classes_with_background]
pkulzc's avatar
pkulzc committed
204
      'detection_features': [batch, num_boxes, roi_height, roi_width, depth]
205
      'detection_classes': [batch, max_detections]
206
207
      'detection_masks': [batch, max_detections, mask_height, mask_width]
        (optional).
208
209
      'detection_keypoints': [batch, max_detections, num_keypoints, 2]
        (optional).
210
      'num_detections': [batch]
211
    output_collection_name: Name of collection to add output tensors to.
212
213
214

  Returns:
    A tensor dict containing the added output tensor nodes.
215
  """
216
  detection_fields = fields.DetectionResultFields
217
  label_id_offset = 1
218
219
  boxes = postprocessed_tensors.get(detection_fields.detection_boxes)
  scores = postprocessed_tensors.get(detection_fields.detection_scores)
220
221
  multiclass_scores = postprocessed_tensors.get(
      detection_fields.detection_multiclass_scores)
pkulzc's avatar
pkulzc committed
222
223
  box_classifier_features = postprocessed_tensors.get(
      detection_fields.detection_features)
224
225
  raw_boxes = postprocessed_tensors.get(detection_fields.raw_detection_boxes)
  raw_scores = postprocessed_tensors.get(detection_fields.raw_detection_scores)
226
227
  classes = postprocessed_tensors.get(
      detection_fields.detection_classes) + label_id_offset
228
  keypoints = postprocessed_tensors.get(detection_fields.detection_keypoints)
229
230
  masks = postprocessed_tensors.get(detection_fields.detection_masks)
  num_detections = postprocessed_tensors.get(detection_fields.num_detections)
231
  outputs = {}
232
233
234
235
  outputs[detection_fields.detection_boxes] = tf.identity(
      boxes, name=detection_fields.detection_boxes)
  outputs[detection_fields.detection_scores] = tf.identity(
      scores, name=detection_fields.detection_scores)
236
237
238
  if multiclass_scores is not None:
    outputs[detection_fields.detection_multiclass_scores] = tf.identity(
        multiclass_scores, name=detection_fields.detection_multiclass_scores)
pkulzc's avatar
pkulzc committed
239
240
241
242
  if box_classifier_features is not None:
    outputs[detection_fields.detection_features] = tf.identity(
        box_classifier_features,
        name=detection_fields.detection_features)
243
244
245
246
  outputs[detection_fields.detection_classes] = tf.identity(
      classes, name=detection_fields.detection_classes)
  outputs[detection_fields.num_detections] = tf.identity(
      num_detections, name=detection_fields.num_detections)
247
248
249
250
251
252
  if raw_boxes is not None:
    outputs[detection_fields.raw_detection_boxes] = tf.identity(
        raw_boxes, name=detection_fields.raw_detection_boxes)
  if raw_scores is not None:
    outputs[detection_fields.raw_detection_scores] = tf.identity(
        raw_scores, name=detection_fields.raw_detection_scores)
253
254
255
  if keypoints is not None:
    outputs[detection_fields.detection_keypoints] = tf.identity(
        keypoints, name=detection_fields.detection_keypoints)
256
  if masks is not None:
257
258
    outputs[detection_fields.detection_masks] = tf.identity(
        masks, name=detection_fields.detection_masks)
259
260
  for output_key in outputs:
    tf.add_to_collection(output_collection_name, outputs[output_key])
261

262
  return outputs
263
264


265
266
267
268
def write_saved_model(saved_model_path,
                      frozen_graph_def,
                      inputs,
                      outputs):
269
270
271
272
273
274
275
276
277
  """Writes SavedModel to disk.

  If checkpoint_path is not None bakes the weights into the graph thereby
  eliminating the need of checkpoint files during inference. If the model
  was trained with moving averages, setting use_moving_averages to true
  restores the moving averages, otherwise the original set of variables
  is restored.

  Args:
278
279
    saved_model_path: Path to write SavedModel.
    frozen_graph_def: tf.GraphDef holding frozen graph.
280
    inputs: The input placeholder tensor.
281
282
283
    outputs: A tensor dictionary containing the outputs of a DetectionModel.
  """
  with tf.Graph().as_default():
284
    with tf.Session() as sess:
285

286
      tf.import_graph_def(frozen_graph_def, name='')
287

288
      builder = tf.saved_model.builder.SavedModelBuilder(saved_model_path)
289
290
291
292
293
294
295
296
297
298
299

      tensor_info_inputs = {
          'inputs': tf.saved_model.utils.build_tensor_info(inputs)}
      tensor_info_outputs = {}
      for k, v in outputs.items():
        tensor_info_outputs[k] = tf.saved_model.utils.build_tensor_info(v)

      detection_signature = (
          tf.saved_model.signature_def_utils.build_signature_def(
              inputs=tensor_info_inputs,
              outputs=tensor_info_outputs,
300
301
              method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME
          ))
302
303

      builder.add_meta_graph_and_variables(
304
305
          sess,
          [tf.saved_model.tag_constants.SERVING],
306
          signature_def_map={
307
308
              tf.saved_model.signature_constants
              .DEFAULT_SERVING_SIGNATURE_DEF_KEY:
309
310
311
312
313
314
                  detection_signature,
          },
      )
      builder.save()


315
316
317
318
319
def write_graph_and_checkpoint(inference_graph_def,
                               model_path,
                               input_saver_def,
                               trained_checkpoint_prefix):
  """Writes the graph and the checkpoint into disk."""
320
321
322
323
  for node in inference_graph_def.node:
    node.device = ''
  with tf.Graph().as_default():
    tf.import_graph_def(inference_graph_def, name='')
324
325
326
    with tf.Session() as sess:
      saver = tf.train.Saver(
          saver_def=input_saver_def, save_relative_paths=True)
327
328
329
330
      saver.restore(sess, trained_checkpoint_prefix)
      saver.save(sess, model_path)


331
332
def _get_outputs_from_inputs(input_tensors, detection_model,
                             output_collection_name):
333
  inputs = tf.cast(input_tensors, dtype=tf.float32)
334
335
336
337
338
  preprocessed_inputs, true_image_shapes = detection_model.preprocess(inputs)
  output_tensors = detection_model.predict(
      preprocessed_inputs, true_image_shapes)
  postprocessed_tensors = detection_model.postprocess(
      output_tensors, true_image_shapes)
339
340
  return add_output_tensor_nodes(postprocessed_tensors,
                                 output_collection_name)
341
342


343
344
def build_detection_graph(input_type, detection_model, input_shape,
                          output_collection_name, graph_hook_fn):
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
  """Build the detection graph."""
  if input_type not in input_placeholder_fn_map:
    raise ValueError('Unknown input type: {}'.format(input_type))
  placeholder_args = {}
  if input_shape is not None:
    if input_type != 'image_tensor':
      raise ValueError('Can only specify input shape for `image_tensor` '
                       'inputs.')
    placeholder_args['input_shape'] = input_shape
  placeholder_tensor, input_tensors = input_placeholder_fn_map[input_type](
      **placeholder_args)
  outputs = _get_outputs_from_inputs(
      input_tensors=input_tensors,
      detection_model=detection_model,
      output_collection_name=output_collection_name)

  # Add global step to the graph.
  slim.get_or_create_global_step()

  if graph_hook_fn: graph_hook_fn()

  return outputs, placeholder_tensor


369
370
371
def _export_inference_graph(input_type,
                            detection_model,
                            use_moving_averages,
372
373
                            trained_checkpoint_prefix,
                            output_directory,
Vivek Rathod's avatar
Vivek Rathod committed
374
375
                            additional_output_tensor_names=None,
                            input_shape=None,
376
                            output_collection_name='inference_op',
377
                            graph_hook_fn=None,
378
379
                            write_inference_graph=False,
                            temp_checkpoint_prefix=''):
380
  """Export helper."""
381
382
383
384
385
386
  tf.gfile.MakeDirs(output_directory)
  frozen_graph_path = os.path.join(output_directory,
                                   'frozen_inference_graph.pb')
  saved_model_path = os.path.join(output_directory, 'saved_model')
  model_path = os.path.join(output_directory, 'model.ckpt')

387
  outputs, placeholder_tensor = build_detection_graph(
388
389
390
391
392
      input_type=input_type,
      detection_model=detection_model,
      input_shape=input_shape,
      output_collection_name=output_collection_name,
      graph_hook_fn=graph_hook_fn)
393

394
  profile_inference_graph(tf.get_default_graph())
395
  saver_kwargs = {}
396
  if use_moving_averages:
397
398
399
400
401
402
403
    if not temp_checkpoint_prefix:
      # This check is to be compatible with both version of SaverDef.
      if os.path.isfile(trained_checkpoint_prefix):
        saver_kwargs['write_version'] = saver_pb2.SaverDef.V1
        temp_checkpoint_prefix = tempfile.NamedTemporaryFile().name
      else:
        temp_checkpoint_prefix = tempfile.mkdtemp()
Vivek Rathod's avatar
Vivek Rathod committed
404
405
    replace_variable_values_with_moving_averages(
        tf.get_default_graph(), trained_checkpoint_prefix,
406
407
        temp_checkpoint_prefix)
    checkpoint_to_use = temp_checkpoint_prefix
408
  else:
Vivek Rathod's avatar
Vivek Rathod committed
409
410
    checkpoint_to_use = trained_checkpoint_prefix

411
  saver = tf.train.Saver(**saver_kwargs)
412
413
  input_saver_def = saver.as_saver_def()

414
  write_graph_and_checkpoint(
415
416
417
      inference_graph_def=tf.get_default_graph().as_graph_def(),
      model_path=model_path,
      input_saver_def=input_saver_def,
Vivek Rathod's avatar
Vivek Rathod committed
418
      trained_checkpoint_prefix=checkpoint_to_use)
419
420
421
422
423
424
  if write_inference_graph:
    inference_graph_def = tf.get_default_graph().as_graph_def()
    inference_graph_path = os.path.join(output_directory,
                                        'inference_graph.pbtxt')
    for node in inference_graph_def.node:
      node.device = ''
425
    with tf.gfile.GFile(inference_graph_path, 'wb') as f:
426
      f.write(str(inference_graph_def))
Vivek Rathod's avatar
Vivek Rathod committed
427
428
429
430
431

  if additional_output_tensor_names is not None:
    output_node_names = ','.join(outputs.keys()+additional_output_tensor_names)
  else:
    output_node_names = ','.join(outputs.keys())
432

433
  frozen_graph_def = freeze_graph.freeze_graph_with_def_protos(
434
435
      input_graph_def=tf.get_default_graph().as_graph_def(),
      input_saver_def=input_saver_def,
Vivek Rathod's avatar
Vivek Rathod committed
436
437
      input_checkpoint=checkpoint_to_use,
      output_node_names=output_node_names,
438
439
      restore_op_name='save/restore_all',
      filename_tensor_name='save/Const:0',
440
      output_graph=frozen_graph_path,
441
442
      clear_devices=True,
      initializer_nodes='')
443

444
445
  write_saved_model(saved_model_path, frozen_graph_def,
                    placeholder_tensor, outputs)
446
447


448
449
450
451
def export_inference_graph(input_type,
                           pipeline_config,
                           trained_checkpoint_prefix,
                           output_directory,
Vivek Rathod's avatar
Vivek Rathod committed
452
453
                           input_shape=None,
                           output_collection_name='inference_op',
454
455
                           additional_output_tensor_names=None,
                           write_inference_graph=False):
456
457
458
  """Exports inference graph for the model specified in the pipeline config.

  Args:
459
460
    input_type: Type of input for the graph. Can be one of ['image_tensor',
      'encoded_image_string_tensor', 'tf_example'].
461
    pipeline_config: pipeline_pb2.TrainAndEvalPipelineConfig proto.
462
463
    trained_checkpoint_prefix: Path to the trained checkpoint file.
    output_directory: Path to write outputs.
Vivek Rathod's avatar
Vivek Rathod committed
464
465
    input_shape: Sets a fixed shape for an `image_tensor` input. If not
      specified, will default to [None, None, None, 3].
466
467
    output_collection_name: Name of collection to add output tensors to.
      If None, does not add output tensors to a collection.
Vivek Rathod's avatar
Vivek Rathod committed
468
    additional_output_tensor_names: list of additional output
469
      tensors to include in the frozen graph.
470
    write_inference_graph: If true, writes inference graph to disk.
471
472
473
  """
  detection_model = model_builder.build(pipeline_config.model,
                                        is_training=False)
474
475
476
477
478
  graph_rewriter_fn = None
  if pipeline_config.HasField('graph_rewriter'):
    graph_rewriter_config = pipeline_config.graph_rewriter
    graph_rewriter_fn = graph_rewriter_builder.build(graph_rewriter_config,
                                                     is_training=False)
479
480
481
482
483
484
485
486
487
  _export_inference_graph(
      input_type,
      detection_model,
      pipeline_config.eval_config.use_moving_averages,
      trained_checkpoint_prefix,
      output_directory,
      additional_output_tensor_names,
      input_shape,
      output_collection_name,
488
      graph_hook_fn=graph_rewriter_fn,
489
      write_inference_graph=write_inference_graph)
490
  pipeline_config.eval_config.use_moving_averages = False
491
  config_util.save_pipeline_config(pipeline_config, output_directory)
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522


def profile_inference_graph(graph):
  """Profiles the inference graph.

  Prints model parameters and computation FLOPs given an inference graph.
  BatchNorms are excluded from the parameter count due to the fact that
  BatchNorms are usually folded. BatchNorm, Initializer, Regularizer
  and BiasAdd are not considered in FLOP count.

  Args:
    graph: the inference graph.
  """
  tfprof_vars_option = (
      tf.contrib.tfprof.model_analyzer.TRAINABLE_VARS_PARAMS_STAT_OPTIONS)
  tfprof_flops_option = tf.contrib.tfprof.model_analyzer.FLOAT_OPS_OPTIONS

  # Batchnorm is usually folded during inference.
  tfprof_vars_option['trim_name_regexes'] = ['.*BatchNorm.*']
  # Initializer and Regularizer are only used in training.
  tfprof_flops_option['trim_name_regexes'] = [
      '.*BatchNorm.*', '.*Initializer.*', '.*Regularizer.*', '.*BiasAdd.*'
  ]

  tf.contrib.tfprof.model_analyzer.print_model_analysis(
      graph,
      tfprof_options=tfprof_vars_option)

  tf.contrib.tfprof.model_analyzer.print_model_analysis(
      graph,
      tfprof_options=tfprof_flops_option)