README.md 5.65 KB
Newer Older
Will Cromar's avatar
Will Cromar committed
1
2
3
4
5
6
7
8
9
10
11
# Image Classification

This folder contains the TF 2.0 model examples for image classification:

* [ResNet](#resnet)
* [MNIST](#mnist)

For more information about other types of models, please refer to this
[README file](../../README.md).

## ResNet
12

13
Similar to the [estimator implementation](../../r1/resnet), the Keras
14
implementation has code for both CIFAR-10 data and ImageNet data. The CIFAR-10
15
16
version uses a ResNet56 model implemented in
[`resnet_cifar_model.py`](./resnet_cifar_model.py), and the ImageNet version
17
18
uses a ResNet50 model implemented in [`resnet_model.py`](./resnet_model.py).

19
20
21
To use
either dataset, make sure that you have the latest version of TensorFlow
installed and
22
[add the models folder to your Python path](/official/#running-the-models),
23
otherwise you may encounter an error like `ImportError: No module named
24
25
official.resnet`.

Will Cromar's avatar
Will Cromar committed
26
### CIFAR-10
27
28
29

Download and extract the CIFAR-10 data. You can use the following script:
```bash
30
python ../../r1/resnet/cifar10_download_and_extract.py
31
32
33
34
35
```

After you download the data, you can run the program by:

```bash
36
python resnet_cifar_main.py
37
38
```

39
If you did not use the default directory to download the data, specify the
40
41
42
location with the `--data_dir` flag, like:

```bash
43
python resnet_cifar_main.py --data_dir=/path/to/cifar
44
45
```

Will Cromar's avatar
Will Cromar committed
46
### ImageNet
47

48
Download the ImageNet dataset and convert it to TFRecord format.
49
50
51
52
53
54
55
The following [script](https://github.com/tensorflow/tpu/blob/master/tools/datasets/imagenet_to_gcs.py)
and [README](https://github.com/tensorflow/tpu/tree/master/tools/datasets#imagenet_to_gcspy)
provide a few options.

Once your dataset is ready, you can begin training the model as follows:

```bash
56
python resnet_imagenet_main.py
57
58
59
60
61
62
```

Again, if you did not download the data to the default directory, specify the
location with the `--data_dir` flag:

```bash
63
python resnet_imagenet_main.py --data_dir=/path/to/imagenet
64
65
66
67
```

There are more flag options you can specify. Here are some examples:

68
- `--use_synthetic_data`: when set to true, synthetic data, rather than real
69
70
71
72
73
74
data, are used;
- `--batch_size`: the batch size used for the model;
- `--model_dir`: the directory to save the model checkpoint;
- `--train_epochs`: number of epoches to run for training the model;
- `--train_steps`: number of steps to run for training the model. We now only
support a number that is smaller than the number of batches in an epoch.
75
- `--skip_eval`: when set to true, evaluation as well as validation during
76
77
training is skipped

78
For example, this is a typical command line to run with ImageNet data with
79
80
81
batch size 128 per GPU:

```bash
82
83
84
85
86
87
88
python -m resnet_imagenet_main \
    --model_dir=/tmp/model_dir/something \
    --num_gpus=2 \
    --batch_size=128 \
    --train_epochs=90 \
    --train_steps=10 \
    --use_synthetic_data=false
89
90
```

91
See [`common.py`](common.py) for full list of options.
92

Will Cromar's avatar
Will Cromar committed
93
94
### Using multiple GPUs

95
96
You can train these models on multiple GPUs using `tf.distribute.Strategy` API.
You can read more about them in this
97
98
[guide](https://www.tensorflow.org/guide/distribute_strategy).

99
100
In this example, we have made it easier to use is with just a command line flag
`--num_gpus`. By default this flag is 1 if TensorFlow is compiled with CUDA,
101
102
103
104
and 0 otherwise.

- --num_gpus=0: Uses tf.distribute.OneDeviceStrategy with CPU as the device.
- --num_gpus=1: Uses tf.distribute.OneDeviceStrategy with GPU as the device.
105
- --num_gpus=2+: Uses tf.distribute.MirroredStrategy to run synchronous
106
107
distributed training across the GPUs.

108
If you wish to run without `tf.distribute.Strategy`, you can do so by setting
109
110
`--distribution_strategy=off`.

Will Cromar's avatar
Will Cromar committed
111
### Running on Cloud TPUs
Will Cromar's avatar
Will Cromar committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

Note: This model will **not** work with TPUs on Colab.

You can train the ResNet CTL model on Cloud TPUs using
`tf.distribute.TPUStrategy`. If you are not familiar with Cloud TPUs, it is
strongly recommended that you go through the
[quickstart](https://cloud.google.com/tpu/docs/quickstart) to learn how to
create a TPU and GCE VM.

To run ResNet model on a TPU, you must set `--distribution_strategy=tpu` and
`--tpu=$TPU_NAME`, where `$TPU_NAME` the name of your TPU in the Cloud Console.
From a GCE VM, you can run the following command to train ResNet for one epoch
on a v2-8 or v3-8 TPU:

```bash
python resnet_ctl_imagenet_main.py \
  --tpu=$TPU_NAME \
  --model_dir=$MODEL_DIR \
  --data_dir=$DATA_DIR \
  --batch_size=1024 \
  --steps_per_loop=500 \
  --train_epochs=1 \
  --use_synthetic_data=false \
  --dtype=fp32 \
  --enable_eager=true \
  --enable_tensorboard=false \
  --distribution_strategy=tpu \
  --log_steps=50 \
  --single_l2_loss_op=true \
  --use_tf_function=true
```

To train the ResNet to convergence, run it for 90 epochs:

```bash
python resnet_ctl_imagenet_main.py \
  --tpu=$TPU_NAME \
  --model_dir=$MODEL_DIR \
  --data_dir=$DATA_DIR \
  --batch_size=1024 \
  --steps_per_loop=500 \
  --train_epochs=90 \
  --use_synthetic_data=false \
  --dtype=fp32 \
  --enable_eager=true \
  --enable_tensorboard=false \
  --distribution_strategy=tpu \
  --log_steps=50 \
  --single_l2_loss_op=true \
  --use_tf_function=true
```

Note: `$MODEL_DIR` and `$DATA_DIR` must be GCS paths.

Will Cromar's avatar
Will Cromar committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

## MNIST

To download the data and run the MNIST sample model locally for the first time,
run one of the following command:

```bash
python mnist_main.py \
  --model_dir=$MODEL_DIR \
  --data_dir=$DATA_DIR \
  --train_epochs=10 \
  --distribution_strategy=one_device \
  --num_gpus=$NUM_GPUS \
  --download
```

To train the model on a Cloud TPU, run the following command:

```bash
python mnist_main.py \
  --tpu=$TPU_NAME \
  --model_dir=$MODEL_DIR \
  --data_dir=$DATA_DIR \
  --train_epochs=10 \
  --distribution_strategy=tpu \
  --download
```

Note: the `--download` flag is only required the first time you run the model.