Commit 28c5f526 authored by Will Cromar's avatar Will Cromar Committed by A. Unique TensorFlower
Browse files

Internal change

PiperOrigin-RevId: 278394352
parent b3e74d15
This folder contains the Keras implementation of the ResNet models. For more
information about the models, please refer to this [README file](../../README.md).
# Image Classification
This folder contains the TF 2.0 model examples for image classification:
* [ResNet](#resnet)
* [MNIST](#mnist)
For more information about other types of models, please refer to this
[README file](../../README.md).
## ResNet
Similar to the [estimator implementation](../../r1/resnet), the Keras
implementation has code for both CIFAR-10 data and ImageNet data. The CIFAR-10
......@@ -14,7 +23,7 @@ installed and
otherwise you may encounter an error like `ImportError: No module named
official.resnet`.
## CIFAR-10
### CIFAR-10
Download and extract the CIFAR-10 data. You can use the following script:
```bash
......@@ -34,7 +43,7 @@ location with the `--data_dir` flag, like:
python resnet_cifar_main.py --data_dir=/path/to/cifar
```
## ImageNet
### ImageNet
Download the ImageNet dataset and convert it to TFRecord format.
The following [script](https://github.com/tensorflow/tpu/blob/master/tools/datasets/imagenet_to_gcs.py)
......@@ -81,7 +90,8 @@ python -m resnet_imagenet_main \
See [`common.py`](common.py) for full list of options.
## Using multiple GPUs
### Using multiple GPUs
You can train these models on multiple GPUs using `tf.distribute.Strategy` API.
You can read more about them in this
[guide](https://www.tensorflow.org/guide/distribute_strategy).
......@@ -98,7 +108,7 @@ distributed training across the GPUs.
If you wish to run without `tf.distribute.Strategy`, you can do so by setting
`--distribution_strategy=off`.
## Running on Cloud TPUs
### Running on Cloud TPUs
Note: This model will **not** work with TPUs on Colab.
......@@ -153,3 +163,32 @@ python resnet_ctl_imagenet_main.py \
Note: `$MODEL_DIR` and `$DATA_DIR` must be GCS paths.
## MNIST
To download the data and run the MNIST sample model locally for the first time,
run one of the following command:
```bash
python mnist_main.py \
--model_dir=$MODEL_DIR \
--data_dir=$DATA_DIR \
--train_epochs=10 \
--distribution_strategy=one_device \
--num_gpus=$NUM_GPUS \
--download
```
To train the model on a Cloud TPU, run the following command:
```bash
python mnist_main.py \
--tpu=$TPU_NAME \
--model_dir=$MODEL_DIR \
--data_dir=$DATA_DIR \
--train_epochs=10 \
--distribution_strategy=tpu \
--download
```
Note: the `--download` flag is only required the first time you run the model.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment