resnet_cifar_model.py 12.5 KB
Newer Older
1
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""ResNet56 model for Keras adapted from tf.keras.applications.ResNet50.
16
17
18
19
20
21
22
23
24
25
26

# Reference:
- [Deep Residual Learning for Image Recognition](
    https://arxiv.org/abs/1512.03385)
Adapted from code contributed by BigMoyan.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
Toby Boyd's avatar
Toby Boyd committed
27
28
from tensorflow.python.keras import backend
from tensorflow.python.keras import layers
29
30


31
BATCH_NORM_DECAY = 0.997
32
BATCH_NORM_EPSILON = 1e-5
33
L2_WEIGHT_DECAY = 2e-4
34
35


Shining Sun's avatar
Shining Sun committed
36
37
38
39
40
41
def identity_building_block(input_tensor,
                            kernel_size,
                            filters,
                            stage,
                            block,
                            training=None):
42
43
44
45
46
47
48
49
50
  """The identity block is the block that has no conv layer at shortcut.

  Arguments:
    input_tensor: input tensor
    kernel_size: default 3, the kernel size of
        middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
    block: 'a','b'..., current block label, used for generating layer names
Shining Sun's avatar
Shining Sun committed
51
52
    training: Only used if training keras model with Estimator.  In other
      scenarios it is handled automatically.
53
54
55
56
57
58
59
60
61
62
63
64
65
66

  Returns:
    Output tensor for the block.
  """
  filters1, filters2 = filters
  if tf.keras.backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = tf.keras.layers.Conv2D(filters1, kernel_size,
                             padding='same',
Shining Sun's avatar
Shining Sun committed
67
                             kernel_initializer='he_normal',
68
69
70
71
72
73
74
75
76
                             kernel_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             bias_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             name=conv_name_base + '2a')(input_tensor)
  x = tf.keras.layers.BatchNormalization(axis=bn_axis,
                                         name=bn_name_base + '2a',
                                         momentum=BATCH_NORM_DECAY,
                                         epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
77
                                             x, training=training)
78
79
80
81
  x = tf.keras.layers.Activation('relu')(x)

  x = tf.keras.layers.Conv2D(filters2, kernel_size,
                             padding='same',
Shining Sun's avatar
Shining Sun committed
82
                             kernel_initializer='he_normal',
83
84
85
86
87
88
89
90
91
                             kernel_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             bias_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             name=conv_name_base + '2b')(x)
  x = tf.keras.layers.BatchNormalization(axis=bn_axis,
                                         name=bn_name_base + '2b',
                                         momentum=BATCH_NORM_DECAY,
                                         epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
92
                                             x, training=training)
93
94
95
96
97
98
99

  x = tf.keras.layers.add([x, input_tensor])
  x = tf.keras.layers.Activation('relu')(x)
  return x


def conv_building_block(input_tensor,
Shining Sun's avatar
Shining Sun committed
100
101
102
103
104
105
                        kernel_size,
                        filters,
                        stage,
                        block,
                        strides=(2, 2),
                        training=None):
106
107
108
109
110
111
112
113
114
115
  """A block that has a conv layer at shortcut.

  Arguments:
    input_tensor: input tensor
    kernel_size: default 3, the kernel size of
        middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
    block: 'a','b'..., current block label, used for generating layer names
    strides: Strides for the first conv layer in the block.
Shining Sun's avatar
Shining Sun committed
116
117
    training: Only used if training keras model with Estimator.  In other
      scenarios it is handled automatically.
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

  Returns:
    Output tensor for the block.

  Note that from stage 3,
  the first conv layer at main path is with strides=(2, 2)
  And the shortcut should have strides=(2, 2) as well
  """
  filters1, filters2 = filters
  if tf.keras.backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

Shining Sun's avatar
Shining Sun committed
134
  x = tf.keras.layers.Conv2D(filters1, kernel_size, strides=strides,
135
                             padding='same',
Shining Sun's avatar
Shining Sun committed
136
                             kernel_initializer='he_normal',
137
138
139
140
                             kernel_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             bias_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
Shining Sun's avatar
Shining Sun committed
141
                             name=conv_name_base + '2a')(input_tensor)
142
143
144
145
  x = tf.keras.layers.BatchNormalization(axis=bn_axis,
                                         name=bn_name_base + '2a',
                                         momentum=BATCH_NORM_DECAY,
                                         epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
146
                                             x, training=training)
147
148
149
  x = tf.keras.layers.Activation('relu')(x)

  x = tf.keras.layers.Conv2D(filters2, kernel_size, padding='same',
Shining Sun's avatar
Shining Sun committed
150
                             kernel_initializer='he_normal',
151
152
153
154
155
156
157
158
159
                             kernel_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             bias_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             name=conv_name_base + '2b')(x)
  x = tf.keras.layers.BatchNormalization(axis=bn_axis,
                                         name=bn_name_base + '2b',
                                         momentum=BATCH_NORM_DECAY,
                                         epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
160
                                             x, training=training)
161
162

  shortcut = tf.keras.layers.Conv2D(filters2, (1, 1), strides=strides,
Shining Sun's avatar
Shining Sun committed
163
                                    kernel_initializer='he_normal',
164
165
166
167
168
169
170
171
                                    kernel_regularizer=
                                    tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                                    bias_regularizer=
                                    tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                                    name=conv_name_base + '1')(input_tensor)
  shortcut = tf.keras.layers.BatchNormalization(
      axis=bn_axis, name=bn_name_base + '1',
      momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
172
          shortcut, training=training)
173
174
175
176
177
178

  x = tf.keras.layers.add([x, shortcut])
  x = tf.keras.layers.Activation('relu')(x)
  return x


Shining Sun's avatar
Shining Sun committed
179
def resnet56(classes=100, training=None):
180
181
182
  """Instantiates the ResNet56 architecture.

  Arguments:
Shining Sun's avatar
Shining Sun committed
183
184
185
    classes: optional number of classes to classify images into
    training: Only used if training keras model with Estimator.  In other
    scenarios it is handled automatically.
186
187

  Returns:
Shining Sun's avatar
Shining Sun committed
188
    A Keras model instance.
189
190
  """
  # Determine proper input shape
Shining Sun's avatar
Shining Sun committed
191
192
  if backend.image_data_format() == 'channels_first':
    input_shape = (3, 32, 32)
193
    bn_axis = 1
Toby Boyd's avatar
Toby Boyd committed
194
  else:  # channel_last
Shining Sun's avatar
Shining Sun committed
195
196
    input_shape = (32, 32, 3)
    bn_axis = 3
197

Toby Boyd's avatar
Toby Boyd committed
198
  img_input = layers.Input(shape=input_shape)
199
200
201
202
  x = tf.keras.layers.ZeroPadding2D(padding=(1, 1), name='conv1_pad')(img_input)
  x = tf.keras.layers.Conv2D(16, (3, 3),
                             strides=(1, 1),
                             padding='valid',
Shining Sun's avatar
Shining Sun committed
203
204
205
206
207
                             kernel_initializer='he_normal',
                             kernel_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                             bias_regularizer=
                             tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
208
209
210
211
                             name='conv1')(x)
  x = tf.keras.layers.BatchNormalization(axis=bn_axis, name='bn_conv1',
                                         momentum=BATCH_NORM_DECAY,
                                         epsilon=BATCH_NORM_EPSILON)(
Shining Sun's avatar
Shining Sun committed
212
                                             x, training=training)
213
214
215
  x = tf.keras.layers.Activation('relu')(x)

  x = conv_building_block(x, 3, [16, 16], stage=2, block='a', strides=(1, 1),
Shining Sun's avatar
Shining Sun committed
216
                          training=training)
217
  x = identity_building_block(x, 3, [16, 16], stage=2, block='b',
Shining Sun's avatar
Shining Sun committed
218
                              training=training)
219
  x = identity_building_block(x, 3, [16, 16], stage=2, block='c',
Shining Sun's avatar
Shining Sun committed
220
                              training=training)
221
  x = identity_building_block(x, 3, [16, 16], stage=2, block='d',
Shining Sun's avatar
Shining Sun committed
222
                              training=training)
223
  x = identity_building_block(x, 3, [16, 16], stage=2, block='e',
Shining Sun's avatar
Shining Sun committed
224
                              training=training)
225
  x = identity_building_block(x, 3, [16, 16], stage=2, block='f',
Shining Sun's avatar
Shining Sun committed
226
                              training=training)
227
  x = identity_building_block(x, 3, [16, 16], stage=2, block='g',
Shining Sun's avatar
Shining Sun committed
228
                              training=training)
229
  x = identity_building_block(x, 3, [16, 16], stage=2, block='h',
Shining Sun's avatar
Shining Sun committed
230
                              training=training)
231
  x = identity_building_block(x, 3, [16, 16], stage=2, block='i',
Shining Sun's avatar
Shining Sun committed
232
                              training=training)
233
234

  x = conv_building_block(x, 3, [32, 32], stage=3, block='a',
Shining Sun's avatar
Shining Sun committed
235
                          training=training)
236
  x = identity_building_block(x, 3, [32, 32], stage=3, block='b',
Shining Sun's avatar
Shining Sun committed
237
                              training=training)
238
  x = identity_building_block(x, 3, [32, 32], stage=3, block='c',
Shining Sun's avatar
Shining Sun committed
239
                              training=training)
240
  x = identity_building_block(x, 3, [32, 32], stage=3, block='d',
Shining Sun's avatar
Shining Sun committed
241
                              training=training)
242
  x = identity_building_block(x, 3, [32, 32], stage=3, block='e',
Shining Sun's avatar
Shining Sun committed
243
                              training=training)
244
  x = identity_building_block(x, 3, [32, 32], stage=3, block='f',
Shining Sun's avatar
Shining Sun committed
245
                              training=training)
246
  x = identity_building_block(x, 3, [32, 32], stage=3, block='g',
Shining Sun's avatar
Shining Sun committed
247
                              training=training)
248
  x = identity_building_block(x, 3, [32, 32], stage=3, block='h',
Shining Sun's avatar
Shining Sun committed
249
                              training=training)
250
  x = identity_building_block(x, 3, [32, 32], stage=3, block='i',
Shining Sun's avatar
Shining Sun committed
251
                              training=training)
252
253

  x = conv_building_block(x, 3, [64, 64], stage=4, block='a',
Shining Sun's avatar
Shining Sun committed
254
                          training=training)
255
  x = identity_building_block(x, 3, [64, 64], stage=4, block='b',
Shining Sun's avatar
Shining Sun committed
256
                              training=training)
257
  x = identity_building_block(x, 3, [64, 64], stage=4, block='c',
Shining Sun's avatar
Shining Sun committed
258
                              training=training)
259
  x = identity_building_block(x, 3, [64, 64], stage=4, block='d',
Shining Sun's avatar
Shining Sun committed
260
                              training=training)
261
  x = identity_building_block(x, 3, [64, 64], stage=4, block='e',
Shining Sun's avatar
Shining Sun committed
262
                              training=training)
263
  x = identity_building_block(x, 3, [64, 64], stage=4, block='f',
Shining Sun's avatar
Shining Sun committed
264
                              training=training)
265
  x = identity_building_block(x, 3, [64, 64], stage=4, block='g',
Shining Sun's avatar
Shining Sun committed
266
                              training=training)
267
  x = identity_building_block(x, 3, [64, 64], stage=4, block='h',
Shining Sun's avatar
Shining Sun committed
268
                              training=training)
269
  x = identity_building_block(x, 3, [64, 64], stage=4, block='i',
Shining Sun's avatar
Shining Sun committed
270
271
272
273
274
275
276
277
278
279
                              training=training)

  x = tf.keras.layers.GlobalAveragePooling2D(name='avg_pool')(x)
  x = tf.keras.layers.Dense(classes, activation='softmax',
                            kernel_initializer='he_normal',
                            kernel_regularizer=
                            tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                            bias_regularizer=
                            tf.keras.regularizers.l2(L2_WEIGHT_DECAY),
                            name='fc10')(x)
280
281
282
283
284
285

  inputs = img_input
  # Create model.
  model = tf.keras.models.Model(inputs, x, name='resnet56')

  return model