keras_common_test.py 2.56 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for the keras_common module."""
from __future__ import absolute_import
from __future__ import print_function

from mock import Mock
import numpy as np
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.resnet.keras import keras_common

tf.logging.set_verbosity(tf.logging.ERROR)


class KerasCommonTests(tf.test.TestCase):
  """Tests for keras_common."""

  @classmethod
  def setUpClass(cls):  # pylint: disable=invalid-name
    super(KerasCommonTests, cls).setUpClass()

  def test_build_stats(self):

    history = self._build_history(1.145, cat_accuracy=.99988)
    eval_output = self._build_eval_output(.56432111, 5.990)
    stats = keras_common.build_stats(history, eval_output)

    self.assertEqual(1.145, stats['loss'])
    self.assertEqual(.99988, stats['training_accuracy_top_1'])

    self.assertEqual(.56432111, stats['accuracy_top_1'])
    self.assertEqual(5.990, stats['eval_loss'])

  def test_build_stats_sparse(self):

    history = self._build_history(1.145, cat_accuracy_sparse=.99988)
    eval_output = self._build_eval_output(.928, 1.9844)
    stats = keras_common.build_stats(history, eval_output)

    self.assertEqual(1.145, stats['loss'])
    self.assertEqual(.99988, stats['training_accuracy_top_1'])

    self.assertEqual(.928, stats['accuracy_top_1'])
    self.assertEqual(1.9844, stats['eval_loss'])

  def _build_history(self, loss, cat_accuracy=None,
                     cat_accuracy_sparse=None):
    history_p = Mock()
    history = {}
    history_p.history = history
    history['loss'] = [np.float64(loss)]
    if cat_accuracy:
      history['categorical_accuracy'] = [np.float64(cat_accuracy)]
    if cat_accuracy_sparse:
      history['sparse_categorical_accuracy'] = [np.float64(cat_accuracy_sparse)]

    return history_p

  def _build_eval_output(self, top_1, eval_loss):
    eval_output = [np.float64(eval_loss), np.float64(top_1)]
    return eval_output