# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the keras_common module.""" from __future__ import absolute_import from __future__ import print_function from mock import Mock import numpy as np import tensorflow as tf # pylint: disable=g-bad-import-order from official.resnet.keras import keras_common tf.logging.set_verbosity(tf.logging.ERROR) class KerasCommonTests(tf.test.TestCase): """Tests for keras_common.""" @classmethod def setUpClass(cls): # pylint: disable=invalid-name super(KerasCommonTests, cls).setUpClass() def test_build_stats(self): history = self._build_history(1.145, cat_accuracy=.99988) eval_output = self._build_eval_output(.56432111, 5.990) stats = keras_common.build_stats(history, eval_output) self.assertEqual(1.145, stats['loss']) self.assertEqual(.99988, stats['training_accuracy_top_1']) self.assertEqual(.56432111, stats['accuracy_top_1']) self.assertEqual(5.990, stats['eval_loss']) def test_build_stats_sparse(self): history = self._build_history(1.145, cat_accuracy_sparse=.99988) eval_output = self._build_eval_output(.928, 1.9844) stats = keras_common.build_stats(history, eval_output) self.assertEqual(1.145, stats['loss']) self.assertEqual(.99988, stats['training_accuracy_top_1']) self.assertEqual(.928, stats['accuracy_top_1']) self.assertEqual(1.9844, stats['eval_loss']) def _build_history(self, loss, cat_accuracy=None, cat_accuracy_sparse=None): history_p = Mock() history = {} history_p.history = history history['loss'] = [np.float64(loss)] if cat_accuracy: history['categorical_accuracy'] = [np.float64(cat_accuracy)] if cat_accuracy_sparse: history['sparse_categorical_accuracy'] = [np.float64(cat_accuracy_sparse)] return history_p def _build_eval_output(self, top_1, eval_loss): eval_output = [np.float64(eval_loss), np.float64(top_1)] return eval_output