bert_pretrainer.py 11 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Hongkun Yu's avatar
Hongkun Yu committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
"""BERT Pre-training model."""
16
# pylint: disable=g-classes-have-attributes
17
import collections
Hongkun Yu's avatar
Hongkun Yu committed
18
import copy
19
20
from typing import List, Optional

Hongkun Yu's avatar
Hongkun Yu committed
21
from absl import logging
22
import gin
Hongkun Yu's avatar
Hongkun Yu committed
23
import tensorflow as tf
Hongkun Yu's avatar
Hongkun Yu committed
24

Hongkun Yu's avatar
Hongkun Yu committed
25
from official.nlp.modeling import layers
Hongkun Yu's avatar
Hongkun Yu committed
26
27
28
29
30
from official.nlp.modeling import networks


@tf.keras.utils.register_keras_serializable(package='Text')
class BertPretrainer(tf.keras.Model):
31
  """BERT pretraining model.
Hongkun Yu's avatar
Hongkun Yu committed
32

33
  [Note] Please use the new `BertPretrainerV2` for your projects.
Hongkun Yu's avatar
Hongkun Yu committed
34

35
36
37
  The BertPretrainer allows a user to pass in a transformer stack, and
  instantiates the masked language model and classification networks that are
  used to create the training objectives.
Hongkun Yu's avatar
Hongkun Yu committed
38

39
40
41
  *Note* that the model is constructed by
  [Keras Functional API](https://keras.io/guides/functional_api/).

42
  Args:
Hongkun Yu's avatar
Hongkun Yu committed
43
    network: A transformer network. This network should output a sequence output
44
      and a classification output.
Hongkun Yu's avatar
Hongkun Yu committed
45
46
    num_classes: Number of classes to predict from the classification network.
    num_token_predictions: Number of tokens to predict from the masked LM.
47
48
    embedding_table: Embedding table of a network. If None, the
      "network.get_embedding_table()" is used.
Hongkun Yu's avatar
Hongkun Yu committed
49
50
    activation: The activation (if any) to use in the masked LM network. If
      None, no activation will be used.
Hongkun Yu's avatar
Hongkun Yu committed
51
52
    initializer: The initializer (if any) to use in the masked LM and
      classification networks. Defaults to a Glorot uniform initializer.
53
54
    output: The output style for this network. Can be either `logits` or
      `predictions`.
Hongkun Yu's avatar
Hongkun Yu committed
55
56
57
58
59
60
  """

  def __init__(self,
               network,
               num_classes,
               num_token_predictions,
61
               embedding_table=None,
Hongkun Yu's avatar
Hongkun Yu committed
62
63
64
65
               activation=None,
               initializer='glorot_uniform',
               output='logits',
               **kwargs):
66

Hongkun Yu's avatar
Hongkun Yu committed
67
68
69
70
    # We want to use the inputs of the passed network as the inputs to this
    # Model. To do this, we need to keep a copy of the network inputs for use
    # when we construct the Model object at the end of init. (We keep a copy
    # because we'll be adding another tensor to the copy later.)
71
    network_inputs = network.inputs
Hongkun Yu's avatar
Hongkun Yu committed
72
73
74
75
76
77
78
    inputs = copy.copy(network_inputs)

    # Because we have a copy of inputs to create this Model object, we can
    # invoke the Network object with its own input tensors to start the Model.
    # Note that, because of how deferred construction happens, we can't use
    # the copy of the list here - by the time the network is invoked, the list
    # object contains the additional input added below.
79
    sequence_output, cls_output = network(network_inputs)
Hongkun Yu's avatar
Hongkun Yu committed
80

Hongkun Yu's avatar
Hongkun Yu committed
81
82
83
84
85
    # The encoder network may get outputs from all layers.
    if isinstance(sequence_output, list):
      sequence_output = sequence_output[-1]
    if isinstance(cls_output, list):
      cls_output = cls_output[-1]
Hongkun Yu's avatar
Hongkun Yu committed
86
    sequence_output_length = sequence_output.shape.as_list()[1]
Hongkun Yu's avatar
Hongkun Yu committed
87
88
    if sequence_output_length is not None and (sequence_output_length <
                                               num_token_predictions):
Hongkun Yu's avatar
Hongkun Yu committed
89
90
91
92
93
94
95
96
97
98
99
      raise ValueError(
          "The passed network's output length is %s, which is less than the "
          'requested num_token_predictions %s.' %
          (sequence_output_length, num_token_predictions))

    masked_lm_positions = tf.keras.layers.Input(
        shape=(num_token_predictions,),
        name='masked_lm_positions',
        dtype=tf.int32)
    inputs.append(masked_lm_positions)

Hongkun Yu's avatar
Hongkun Yu committed
100
    if embedding_table is None:
101
102
      embedding_table = network.get_embedding_table()
    masked_lm = layers.MaskedLM(
103
        embedding_table=embedding_table,
Hongkun Yu's avatar
Hongkun Yu committed
104
105
106
        activation=activation,
        initializer=initializer,
        output=output,
Hongkun Yu's avatar
Hongkun Yu committed
107
        name='cls/predictions')
108
    lm_outputs = masked_lm(
Hongkun Yu's avatar
Hongkun Yu committed
109
        sequence_output, masked_positions=masked_lm_positions)
Hongkun Yu's avatar
Hongkun Yu committed
110

111
    classification = networks.Classification(
Hongkun Yu's avatar
Hongkun Yu committed
112
113
114
115
116
        input_width=cls_output.shape[-1],
        num_classes=num_classes,
        initializer=initializer,
        output=output,
        name='classification')
117
    sentence_outputs = classification(cls_output)
Hongkun Yu's avatar
Hongkun Yu committed
118
119

    super(BertPretrainer, self).__init__(
Hongkun Yu's avatar
Hongkun Yu committed
120
121
122
        inputs=inputs,
        outputs=dict(masked_lm=lm_outputs, classification=sentence_outputs),
        **kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    # b/164516224
    # Once we've created the network using the Functional API, we call
    # super().__init__ as though we were invoking the Functional API Model
    # constructor, resulting in this object having all the properties of a model
    # created using the Functional API. Once super().__init__ is called, we
    # can assign attributes to `self` - note that all `self` assignments are
    # below this line.
    config_dict = {
        'network': network,
        'num_classes': num_classes,
        'num_token_predictions': num_token_predictions,
        'activation': activation,
        'initializer': initializer,
        'output': output,
    }

    # We are storing the config dict as a namedtuple here to ensure checkpoint
    # compatibility with an earlier version of this model which did not track
    # the config dict attribute. TF does not track immutable attrs which
    # do not contain Trackables, so by creating a config namedtuple instead of
    # a dict we avoid tracking it.
    config_cls = collections.namedtuple('Config', config_dict.keys())
    self._config = config_cls(**config_dict)

    self.encoder = network
    self.classification = classification
    self.masked_lm = masked_lm

Hongkun Yu's avatar
Hongkun Yu committed
152
  def get_config(self):
153
    return dict(self._config._asdict())
Hongkun Yu's avatar
Hongkun Yu committed
154
155
156
157

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)
158
159
160
161
162
163
164
165


@tf.keras.utils.register_keras_serializable(package='Text')
@gin.configurable
class BertPretrainerV2(tf.keras.Model):
  """BERT pretraining model V2.

  Adds the masked language model head and optional classification heads upon the
Hongkun Yu's avatar
Hongkun Yu committed
166
  transformer encoder.
167

168
  Args:
169
170
    encoder_network: A transformer network. This network should output a
      sequence output and a classification output.
Hongkun Yu's avatar
Hongkun Yu committed
171
172
    mlm_activation: The activation (if any) to use in the masked LM network. If
      None, no activation will be used.
173
174
175
176
    mlm_initializer: The initializer (if any) to use in the masked LM. Default
      to a Glorot uniform initializer.
    classification_heads: A list of optional head layers to transform on encoder
      sequence outputs.
177
178
179
180
    customized_masked_lm: A customized masked_lm layer. If None, will create
      a standard layer from `layers.MaskedLM`; if not None, will use the
      specified masked_lm layer. Above arguments `mlm_activation` and
      `mlm_initializer` will be ignored.
181
182
183
    name: The name of the model.
  Inputs: Inputs defined by the encoder network, plus `masked_lm_positions` as a
    dictionary.
Chen Chen's avatar
Chen Chen committed
184
185
  Outputs: A dictionary of `lm_output`, classification head outputs keyed by
    head names, and also outputs from `encoder_network`, keyed by
Hongkun Yu's avatar
Hongkun Yu committed
186
    `sequence_output` and `encoder_outputs` (if any).
187
188
189
190
191
  """

  def __init__(
      self,
      encoder_network: tf.keras.Model,
Hongkun Yu's avatar
Hongkun Yu committed
192
      mlm_activation=None,
193
194
      mlm_initializer='glorot_uniform',
      classification_heads: Optional[List[tf.keras.layers.Layer]] = None,
195
      customized_masked_lm: Optional[tf.keras.layers.Layer] = None,
196
197
      name: str = 'bert',
      **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
198
    super().__init__(self, name=name, **kwargs)
199
200
201
    self._config = {
        'encoder_network': encoder_network,
        'mlm_initializer': mlm_initializer,
202
        'mlm_activation': mlm_activation,
203
204
205
206
        'classification_heads': classification_heads,
        'name': name,
    }
    self.encoder_network = encoder_network
Frederick Liu's avatar
Frederick Liu committed
207
208
    # Makes sure the weights are built.
    _ = self.encoder_network(self.encoder_network.inputs)
209
    inputs = copy.copy(self.encoder_network.inputs)
Hongkun Yu's avatar
Hongkun Yu committed
210
211
212
213
214
215
216
217
218
219
220
221
    self.classification_heads = classification_heads or []
    if len(set([cls.name for cls in self.classification_heads])) != len(
        self.classification_heads):
      raise ValueError('Classification heads should have unique names.')

    self.masked_lm = customized_masked_lm or layers.MaskedLM(
        embedding_table=self.encoder_network.get_embedding_table(),
        activation=mlm_activation,
        initializer=mlm_initializer,
        name='cls/predictions')
    masked_lm_positions = tf.keras.layers.Input(
        shape=(None,), name='masked_lm_positions', dtype=tf.int32)
Frederick Liu's avatar
Frederick Liu committed
222
223
224
225
    if isinstance(inputs, dict):
      inputs['masked_lm_positions'] = masked_lm_positions
    else:
      inputs.append(masked_lm_positions)
Hongkun Yu's avatar
Hongkun Yu committed
226
227
228
229
230
231
232
233
234
    self.inputs = inputs

  def call(self, inputs):
    if isinstance(inputs, list):
      logging.warning('List inputs to BertPretrainer are discouraged.')
      inputs = dict([
          (ref.name, tensor) for ref, tensor in zip(self.inputs, inputs)
      ])

Chen Chen's avatar
Chen Chen committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    outputs = dict()
    encoder_network_outputs = self.encoder_network(inputs)
    if isinstance(encoder_network_outputs, list):
      outputs['pooled_output'] = encoder_network_outputs[1]
      # When `encoder_network` was instantiated with return_all_encoder_outputs
      # set to True, `encoder_network_outputs[0]` is a list containing
      # all transformer layers' output.
      if isinstance(encoder_network_outputs[0], list):
        outputs['encoder_outputs'] = encoder_network_outputs[0]
        outputs['sequence_output'] = encoder_network_outputs[0][-1]
      else:
        outputs['sequence_output'] = encoder_network_outputs[0]
    elif isinstance(encoder_network_outputs, dict):
      outputs = encoder_network_outputs
249
    else:
Chen Chen's avatar
Chen Chen committed
250
251
252
      raise ValueError('encoder_network\'s output should be either a list '
                       'or a dict, but got %s' % encoder_network_outputs)
    sequence_output = outputs['sequence_output']
253
254
255
256
257
    # Inference may not have masked_lm_positions and mlm_logits is not needed.
    if 'masked_lm_positions' in inputs:
      masked_lm_positions = inputs['masked_lm_positions']
      outputs['mlm_logits'] = self.masked_lm(
          sequence_output, masked_positions=masked_lm_positions)
258
    for cls_head in self.classification_heads:
Hongkun Yu's avatar
Hongkun Yu committed
259
260
261
262
263
      cls_outputs = cls_head(sequence_output)
      if isinstance(cls_outputs, dict):
        outputs.update(cls_outputs)
      else:
        outputs[cls_head.name] = cls_outputs
Hongkun Yu's avatar
Hongkun Yu committed
264
    return outputs
265
266
267
268

  @property
  def checkpoint_items(self):
    """Returns a dictionary of items to be additionally checkpointed."""
Hongkun Yu's avatar
Hongkun Yu committed
269
    items = dict(encoder=self.encoder_network, masked_lm=self.masked_lm)
270
271
272
273
274
275
276
277
278
279
280
    for head in self.classification_heads:
      for key, item in head.checkpoint_items.items():
        items['.'.join([head.name, key])] = item
    return items

  def get_config(self):
    return self._config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)