bert_pretrainer.py 10.9 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""BERT Pre-training model."""
16
# pylint: disable=g-classes-have-attributes
17
import collections
Hongkun Yu's avatar
Hongkun Yu committed
18
import copy
19
20
from typing import List, Optional

Hongkun Yu's avatar
Hongkun Yu committed
21
from absl import logging
22
import gin
Hongkun Yu's avatar
Hongkun Yu committed
23
import tensorflow as tf
Hongkun Yu's avatar
Hongkun Yu committed
24

Hongkun Yu's avatar
Hongkun Yu committed
25
from official.nlp.modeling import layers
Hongkun Yu's avatar
Hongkun Yu committed
26
27
28
29
30
31
32
33
34
35
36
from official.nlp.modeling import networks


@tf.keras.utils.register_keras_serializable(package='Text')
class BertPretrainer(tf.keras.Model):
  """BERT network training model.

  This is an implementation of the network structure surrounding a transformer
  encoder as described in "BERT: Pre-training of Deep Bidirectional Transformers
  for Language Understanding" (https://arxiv.org/abs/1810.04805).

37
38
39
  The BertPretrainer allows a user to pass in a transformer stack, and
  instantiates the masked language model and classification networks that are
  used to create the training objectives.
Hongkun Yu's avatar
Hongkun Yu committed
40

41
42
43
  *Note* that the model is constructed by
  [Keras Functional API](https://keras.io/guides/functional_api/).

44
  Arguments:
Hongkun Yu's avatar
Hongkun Yu committed
45
    network: A transformer network. This network should output a sequence output
46
      and a classification output.
Hongkun Yu's avatar
Hongkun Yu committed
47
48
    num_classes: Number of classes to predict from the classification network.
    num_token_predictions: Number of tokens to predict from the masked LM.
49
50
    embedding_table: Embedding table of a network. If None, the
      "network.get_embedding_table()" is used.
Hongkun Yu's avatar
Hongkun Yu committed
51
52
    activation: The activation (if any) to use in the masked LM network. If
      None, no activation will be used.
Hongkun Yu's avatar
Hongkun Yu committed
53
54
55
56
57
58
59
60
61
62
    initializer: The initializer (if any) to use in the masked LM and
      classification networks. Defaults to a Glorot uniform initializer.
    output: The output style for this network. Can be either 'logits' or
      'predictions'.
  """

  def __init__(self,
               network,
               num_classes,
               num_token_predictions,
63
               embedding_table=None,
Hongkun Yu's avatar
Hongkun Yu committed
64
65
66
67
               activation=None,
               initializer='glorot_uniform',
               output='logits',
               **kwargs):
68

Hongkun Yu's avatar
Hongkun Yu committed
69
70
71
72
    # We want to use the inputs of the passed network as the inputs to this
    # Model. To do this, we need to keep a copy of the network inputs for use
    # when we construct the Model object at the end of init. (We keep a copy
    # because we'll be adding another tensor to the copy later.)
73
    network_inputs = network.inputs
Hongkun Yu's avatar
Hongkun Yu committed
74
75
76
77
78
79
80
    inputs = copy.copy(network_inputs)

    # Because we have a copy of inputs to create this Model object, we can
    # invoke the Network object with its own input tensors to start the Model.
    # Note that, because of how deferred construction happens, we can't use
    # the copy of the list here - by the time the network is invoked, the list
    # object contains the additional input added below.
81
    sequence_output, cls_output = network(network_inputs)
Hongkun Yu's avatar
Hongkun Yu committed
82

Hongkun Yu's avatar
Hongkun Yu committed
83
84
85
86
87
    # The encoder network may get outputs from all layers.
    if isinstance(sequence_output, list):
      sequence_output = sequence_output[-1]
    if isinstance(cls_output, list):
      cls_output = cls_output[-1]
Hongkun Yu's avatar
Hongkun Yu committed
88
    sequence_output_length = sequence_output.shape.as_list()[1]
Hongkun Yu's avatar
Hongkun Yu committed
89
90
    if sequence_output_length is not None and (sequence_output_length <
                                               num_token_predictions):
Hongkun Yu's avatar
Hongkun Yu committed
91
92
93
94
95
96
97
98
99
100
101
      raise ValueError(
          "The passed network's output length is %s, which is less than the "
          'requested num_token_predictions %s.' %
          (sequence_output_length, num_token_predictions))

    masked_lm_positions = tf.keras.layers.Input(
        shape=(num_token_predictions,),
        name='masked_lm_positions',
        dtype=tf.int32)
    inputs.append(masked_lm_positions)

Hongkun Yu's avatar
Hongkun Yu committed
102
    if embedding_table is None:
103
104
      embedding_table = network.get_embedding_table()
    masked_lm = layers.MaskedLM(
105
        embedding_table=embedding_table,
Hongkun Yu's avatar
Hongkun Yu committed
106
107
108
        activation=activation,
        initializer=initializer,
        output=output,
Hongkun Yu's avatar
Hongkun Yu committed
109
        name='cls/predictions')
110
    lm_outputs = masked_lm(
Hongkun Yu's avatar
Hongkun Yu committed
111
        sequence_output, masked_positions=masked_lm_positions)
Hongkun Yu's avatar
Hongkun Yu committed
112

113
    classification = networks.Classification(
Hongkun Yu's avatar
Hongkun Yu committed
114
115
116
117
118
        input_width=cls_output.shape[-1],
        num_classes=num_classes,
        initializer=initializer,
        output=output,
        name='classification')
119
    sentence_outputs = classification(cls_output)
Hongkun Yu's avatar
Hongkun Yu committed
120
121

    super(BertPretrainer, self).__init__(
Hongkun Yu's avatar
Hongkun Yu committed
122
123
124
        inputs=inputs,
        outputs=dict(masked_lm=lm_outputs, classification=sentence_outputs),
        **kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    # b/164516224
    # Once we've created the network using the Functional API, we call
    # super().__init__ as though we were invoking the Functional API Model
    # constructor, resulting in this object having all the properties of a model
    # created using the Functional API. Once super().__init__ is called, we
    # can assign attributes to `self` - note that all `self` assignments are
    # below this line.
    config_dict = {
        'network': network,
        'num_classes': num_classes,
        'num_token_predictions': num_token_predictions,
        'activation': activation,
        'initializer': initializer,
        'output': output,
    }

    # We are storing the config dict as a namedtuple here to ensure checkpoint
    # compatibility with an earlier version of this model which did not track
    # the config dict attribute. TF does not track immutable attrs which
    # do not contain Trackables, so by creating a config namedtuple instead of
    # a dict we avoid tracking it.
    config_cls = collections.namedtuple('Config', config_dict.keys())
    self._config = config_cls(**config_dict)

    self.encoder = network
    self.classification = classification
    self.masked_lm = masked_lm

Hongkun Yu's avatar
Hongkun Yu committed
154
  def get_config(self):
155
    return dict(self._config._asdict())
Hongkun Yu's avatar
Hongkun Yu committed
156
157
158
159

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)
160
161
162
163
164
165
166
167
168


# TODO(hongkuny): Migrate to BertPretrainerV2 for all usages.
@tf.keras.utils.register_keras_serializable(package='Text')
@gin.configurable
class BertPretrainerV2(tf.keras.Model):
  """BERT pretraining model V2.

  Adds the masked language model head and optional classification heads upon the
Hongkun Yu's avatar
Hongkun Yu committed
169
  transformer encoder.
170
171
172
173

  Arguments:
    encoder_network: A transformer network. This network should output a
      sequence output and a classification output.
Hongkun Yu's avatar
Hongkun Yu committed
174
175
    mlm_activation: The activation (if any) to use in the masked LM network. If
      None, no activation will be used.
176
177
178
179
    mlm_initializer: The initializer (if any) to use in the masked LM. Default
      to a Glorot uniform initializer.
    classification_heads: A list of optional head layers to transform on encoder
      sequence outputs.
180
181
182
183
    customized_masked_lm: A customized masked_lm layer. If None, will create
      a standard layer from `layers.MaskedLM`; if not None, will use the
      specified masked_lm layer. Above arguments `mlm_activation` and
      `mlm_initializer` will be ignored.
184
185
186
    name: The name of the model.
  Inputs: Inputs defined by the encoder network, plus `masked_lm_positions` as a
    dictionary.
Chen Chen's avatar
Chen Chen committed
187
188
189
  Outputs: A dictionary of `lm_output`, classification head outputs keyed by
    head names, and also outputs from `encoder_network`, keyed by
    `pooled_output`, `sequence_output` and `encoder_outputs` (if any).
190
191
192
193
194
  """

  def __init__(
      self,
      encoder_network: tf.keras.Model,
Hongkun Yu's avatar
Hongkun Yu committed
195
      mlm_activation=None,
196
197
      mlm_initializer='glorot_uniform',
      classification_heads: Optional[List[tf.keras.layers.Layer]] = None,
198
      customized_masked_lm: Optional[tf.keras.layers.Layer] = None,
199
200
      name: str = 'bert',
      **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
201
    super().__init__(self, name=name, **kwargs)
202
203
204
205
206
207
208
209
    self._config = {
        'encoder_network': encoder_network,
        'mlm_initializer': mlm_initializer,
        'classification_heads': classification_heads,
        'name': name,
    }
    self.encoder_network = encoder_network
    inputs = copy.copy(self.encoder_network.inputs)
Hongkun Yu's avatar
Hongkun Yu committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    self.classification_heads = classification_heads or []
    if len(set([cls.name for cls in self.classification_heads])) != len(
        self.classification_heads):
      raise ValueError('Classification heads should have unique names.')

    self.masked_lm = customized_masked_lm or layers.MaskedLM(
        embedding_table=self.encoder_network.get_embedding_table(),
        activation=mlm_activation,
        initializer=mlm_initializer,
        name='cls/predictions')
    masked_lm_positions = tf.keras.layers.Input(
        shape=(None,), name='masked_lm_positions', dtype=tf.int32)
    inputs.append(masked_lm_positions)
    self.inputs = inputs

  def call(self, inputs):
    if isinstance(inputs, list):
      logging.warning('List inputs to BertPretrainer are discouraged.')
      inputs = dict([
          (ref.name, tensor) for ref, tensor in zip(self.inputs, inputs)
      ])

Chen Chen's avatar
Chen Chen committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    outputs = dict()
    encoder_network_outputs = self.encoder_network(inputs)
    if isinstance(encoder_network_outputs, list):
      outputs['pooled_output'] = encoder_network_outputs[1]
      # When `encoder_network` was instantiated with return_all_encoder_outputs
      # set to True, `encoder_network_outputs[0]` is a list containing
      # all transformer layers' output.
      if isinstance(encoder_network_outputs[0], list):
        outputs['encoder_outputs'] = encoder_network_outputs[0]
        outputs['sequence_output'] = encoder_network_outputs[0][-1]
      else:
        outputs['sequence_output'] = encoder_network_outputs[0]
    elif isinstance(encoder_network_outputs, dict):
      outputs = encoder_network_outputs
246
    else:
Chen Chen's avatar
Chen Chen committed
247
248
249
      raise ValueError('encoder_network\'s output should be either a list '
                       'or a dict, but got %s' % encoder_network_outputs)
    sequence_output = outputs['sequence_output']
Hongkun Yu's avatar
Hongkun Yu committed
250
    masked_lm_positions = inputs['masked_lm_positions']
Chen Chen's avatar
Chen Chen committed
251
    outputs['mlm_logits'] = self.masked_lm(
Hongkun Yu's avatar
Hongkun Yu committed
252
        sequence_output, masked_positions=masked_lm_positions)
253
254
    for cls_head in self.classification_heads:
      outputs[cls_head.name] = cls_head(sequence_output)
Hongkun Yu's avatar
Hongkun Yu committed
255
    return outputs
256
257
258
259

  @property
  def checkpoint_items(self):
    """Returns a dictionary of items to be additionally checkpointed."""
Hongkun Yu's avatar
Hongkun Yu committed
260
    items = dict(encoder=self.encoder_network, masked_lm=self.masked_lm)
261
262
263
264
265
266
267
268
269
270
271
    for head in self.classification_heads:
      for key, item in head.checkpoint_items.items():
        items['.'.join([head.name, key])] = item
    return items

  def get_config(self):
    return self._config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)