neumf_model.py 16.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Defines NeuMF model for NCF framework.

Some abbreviations used in the code base:
NeuMF: Neural Matrix Factorization
NCF: Neural Collaborative Filtering
GMF: Generalized Matrix Factorization
MLP: Multi-Layer Perceptron

GMF applies a linear kernel to model the latent feature interactions, and MLP
uses a nonlinear kernel to learn the interaction function from data. NeuMF model
is a fused model of GMF and MLP to better model the complex user-item
interactions, and unifies the strengths of linearity of MF and non-linearity of
MLP for modeling the user-item latent structures.

In NeuMF model, it allows GMF and MLP to learn separate embeddings, and combine
the two models by concatenating their last hidden layer.
"""
from __future__ import absolute_import
from __future__ import division
34
# from __future__ import google_type_annotations
35
36
from __future__ import print_function

37
38
import sys

39
40
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf
41
42
from typing import Any, Dict, Text

Shawn Wang's avatar
Shawn Wang committed
43
from official.recommendation import constants as rconst
44
from official.recommendation import movielens
Shining Sun's avatar
Shining Sun committed
45
from official.recommendation import ncf_common
Shawn Wang's avatar
Shawn Wang committed
46
from official.recommendation import stat_utils
47
48


49
def sparse_to_dense_grads(grads_and_vars):
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
  """Convert sparse gradients to dense gradients.

  All sparse gradients, which are represented as instances of tf.IndexedSlices,
  are converted to dense Tensors. Dense gradients, which are represents as
  Tensors, are unchanged.

  The purpose of this conversion is that for small embeddings, which are used by
  this model, applying dense gradients with the AdamOptimizer is faster than
  applying sparse gradients.

  Args
    grads_and_vars: A list of (gradient, variable) tuples. Each gradient can
      be a Tensor or an IndexedSlices. Tensors are unchanged, and IndexedSlices
      are converted to dense Tensors.
  Returns:
    The same list of (gradient, variable) as `grads_and_vars`, except each
    IndexedSlices gradient is converted to a Tensor.
  """

  # Calling convert_to_tensor changes IndexedSlices into Tensors, and leaves
  # Tensors unchanged.
  return [(tf.convert_to_tensor(g), v) for g, v in grads_and_vars]


74
75
def neumf_model_fn(features, labels, mode, params):
  """Model Function for NeuMF estimator."""
76
77
78
  if params.get("use_seed"):
    tf.set_random_seed(stat_utils.random_int32())

79
  users = features[movielens.USER_COLUMN]
80
  items = features[movielens.ITEM_COLUMN]
81

Shining Sun's avatar
Shining Sun committed
82
83
84
  user_input = tf.keras.layers.Input(tensor=users)
  item_input = tf.keras.layers.Input(tensor=items)
  logits = construct_model(user_input, item_input, params).output
85

86
  # Softmax with the first column of zeros is equivalent to sigmoid.
Shining Sun's avatar
Shining Sun committed
87
  softmax_logits = ncf_common.convert_to_softmax_logits(logits)
88

89
  if mode == tf.estimator.ModeKeys.EVAL:
90
    duplicate_mask = tf.cast(features[rconst.DUPLICATE_MASK], tf.float32)
Shining Sun's avatar
Shining Sun committed
91
92
93
94
95
    return _get_estimator_spec_with_metrics(
        logits,
        softmax_logits,
        duplicate_mask,
        params["num_neg"],
Reed's avatar
Reed committed
96
        params["match_mlperf"],
97
        use_tpu_spec=params["use_tpu"])
98

99
100
  elif mode == tf.estimator.ModeKeys.TRAIN:
    labels = tf.cast(labels, tf.int32)
101
    valid_pt_mask = features[rconst.VALID_POINT_MASK]
102

103
    optimizer = tf.compat.v1.train.AdamOptimizer(
104
105
106
107
108
        learning_rate=params["learning_rate"],
        beta1=params["beta1"],
        beta2=params["beta2"],
        epsilon=params["epsilon"])
    if params["use_tpu"]:
109
      optimizer = tf.compat.v1.tpu.CrossShardOptimizer(optimizer)
110

111
    loss = tf.compat.v1.losses.sparse_softmax_cross_entropy(
112
        labels=labels,
113
114
        logits=softmax_logits,
        weights=tf.cast(valid_pt_mask, tf.float32)
115
116
    )

117
118
    tf.identity(loss, name="cross_entropy")

119
120
    global_step = tf.compat.v1.train.get_global_step()
    tvars = tf.compat.v1.trainable_variables()
121
122
    gradients = optimizer.compute_gradients(
        loss, tvars, colocate_gradients_with_ops=True)
123
    gradients = sparse_to_dense_grads(gradients)
124
125
    minimize_op = optimizer.apply_gradients(
        gradients, global_step=global_step, name="train")
126
    update_ops = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS)
127
128
129
130
131
132
133
134
    train_op = tf.group(minimize_op, update_ops)

    return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)

  else:
    raise NotImplementedError


Shining Sun's avatar
Shining Sun committed
135
136
137
138
def _strip_first_and_last_dimension(x, batch_size):
  return tf.reshape(x[0, :], (batch_size,))


139
140
def construct_model(user_input: tf.Tensor, item_input: tf.Tensor,
                    params: Dict[Text, Any]) -> tf.keras.Model:
141
142
143
  """Initialize NeuMF model.

  Args:
Shining Sun's avatar
Shining Sun committed
144
145
    user_input: keras input layer for users
    item_input: keras input layer for items
146
    params: Dict of hyperparameters.
147

148
149
  Raises:
    ValueError: if the first model layer is not even.
150
  Returns:
151
    model:  a keras Model for computing the logits
152
153
154
155
156
157
158
159
160
161
162
163
164
165
  """
  num_users = params["num_users"]
  num_items = params["num_items"]

  model_layers = params["model_layers"]

  mf_regularization = params["mf_regularization"]
  mlp_reg_layers = params["mlp_reg_layers"]

  mf_dim = params["mf_dim"]

  if model_layers[0] % 2 != 0:
    raise ValueError("The first layer size should be multiple of 2!")

166
167
168
  # Initializer for embedding layers
  embedding_initializer = "glorot_uniform"

169
170
171
  def mf_slice_fn(x):
    x = tf.squeeze(x, [1])
    return x[:, :mf_dim]
Shining Sun's avatar
Shining Sun committed
172

173
174
175
  def mlp_slice_fn(x):
    x = tf.squeeze(x, [1])
    return x[:, mf_dim:]
Shining Sun's avatar
Shining Sun committed
176

177
178
179
  # It turns out to be significantly more effecient to store the MF and MLP
  # embedding portions in the same table, and then slice as needed.
  embedding_user = tf.keras.layers.Embedding(
180
181
      num_users,
      mf_dim + model_layers[0] // 2,
182
183
      embeddings_initializer=embedding_initializer,
      embeddings_regularizer=tf.keras.regularizers.l2(mf_regularization),
184
185
186
      input_length=1,
      name="embedding_user")(
          user_input)
187
188

  embedding_item = tf.keras.layers.Embedding(
189
190
      num_items,
      mf_dim + model_layers[0] // 2,
191
192
      embeddings_initializer=embedding_initializer,
      embeddings_regularizer=tf.keras.regularizers.l2(mf_regularization),
193
194
195
      input_length=1,
      name="embedding_item")(
          item_input)
196
197
198
199
200
201
202
203
204
205
206
207

  # GMF part
  mf_user_latent = tf.keras.layers.Lambda(
      mf_slice_fn, name="embedding_user_mf")(embedding_user)
  mf_item_latent = tf.keras.layers.Lambda(
      mf_slice_fn, name="embedding_item_mf")(embedding_item)

  # MLP part
  mlp_user_latent = tf.keras.layers.Lambda(
      mlp_slice_fn, name="embedding_user_mlp")(embedding_user)
  mlp_item_latent = tf.keras.layers.Lambda(
      mlp_slice_fn, name="embedding_item_mlp")(embedding_item)
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

  # Element-wise multiply
  mf_vector = tf.keras.layers.multiply([mf_user_latent, mf_item_latent])

  # Concatenation of two latent features
  mlp_vector = tf.keras.layers.concatenate([mlp_user_latent, mlp_item_latent])

  num_layer = len(model_layers)  # Number of layers in the MLP
  for layer in xrange(1, num_layer):
    model_layer = tf.keras.layers.Dense(
        model_layers[layer],
        kernel_regularizer=tf.keras.regularizers.l2(mlp_reg_layers[layer]),
        activation="relu")
    mlp_vector = model_layer(mlp_vector)

  # Concatenate GMF and MLP parts
  predict_vector = tf.keras.layers.concatenate([mf_vector, mlp_vector])

  # Final prediction layer
  logits = tf.keras.layers.Dense(
      1, activation=None, kernel_initializer="lecun_uniform",
      name=movielens.RATING_COLUMN)(predict_vector)

  # Print model topology.
232
233
  model = tf.keras.models.Model([user_input, item_input], logits)
  model.summary()
234
235
  sys.stdout.flush()

236
  return model
237
238


239
240
241
242
243
244
def _get_estimator_spec_with_metrics(logits: tf.Tensor,
                                     softmax_logits: tf.Tensor,
                                     duplicate_mask: tf.Tensor,
                                     num_training_neg: int,
                                     match_mlperf: bool = False,
                                     use_tpu_spec: bool = False):
Shining Sun's avatar
Shining Sun committed
245
246
247
248
249
250
251
252
253
254
  """Returns a EstimatorSpec that includes the metrics."""
  cross_entropy, \
  metric_fn, \
  in_top_k, \
  ndcg, \
  metric_weights = compute_eval_loss_and_metrics_helper(
      logits,
      softmax_logits,
      duplicate_mask,
      num_training_neg,
255
      match_mlperf)
Shining Sun's avatar
Shining Sun committed
256
257

  if use_tpu_spec:
258
    return tf.estimator.tpu.TPUEstimatorSpec(
Shining Sun's avatar
Shining Sun committed
259
260
261
262
263
264
265
266
267
268
269
        mode=tf.estimator.ModeKeys.EVAL,
        loss=cross_entropy,
        eval_metrics=(metric_fn, [in_top_k, ndcg, metric_weights]))

  return tf.estimator.EstimatorSpec(
      mode=tf.estimator.ModeKeys.EVAL,
      loss=cross_entropy,
      eval_metric_ops=metric_fn(in_top_k, ndcg, metric_weights)
  )


270
271
272
273
274
def compute_eval_loss_and_metrics_helper(logits: tf.Tensor,
                                         softmax_logits: tf.Tensor,
                                         duplicate_mask: tf.Tensor,
                                         num_training_neg: int,
                                         match_mlperf: bool = False):
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
  """Model evaluation with HR and NDCG metrics.

  The evaluation protocol is to rank the test interacted item (truth items)
  among the randomly chosen 999 items that are not interacted by the user.
  The performance of the ranked list is judged by Hit Ratio (HR) and Normalized
  Discounted Cumulative Gain (NDCG).

  For evaluation, the ranked list is truncated at 10 for both metrics. As such,
  the HR intuitively measures whether the test item is present on the top-10
  list, and the NDCG accounts for the position of the hit by assigning higher
  scores to hits at top ranks. Both metrics are calculated for each test user,
  and the average scores are reported.

  If `match_mlperf` is True, then the HR and NDCG computations are done in a
  slightly unusual way to match the MLPerf reference implementation.
  Specifically, if the evaluation negatives contain duplicate items, it will be
  treated as if the item only appeared once. Effectively, for duplicate items in
  a row, the predicted score for all but one of the items will be set to
  -infinity

  For example, suppose we have that following inputs:
  logits_by_user:     [[ 2,  3,  3],
                       [ 5,  4,  4]]

  items_by_user:     [[10, 20, 20],
                      [30, 40, 40]]

  # Note: items_by_user is not explicitly present. Instead the relevant \
          information is contained within `duplicate_mask`

  top_k: 2

  Then with match_mlperf=True, the HR would be 2/2 = 1.0. With
  match_mlperf=False, the HR would be 1/2 = 0.5. This is because each user has
  predicted scores for only 2 unique items: 10 and 20 for the first user, and 30
  and 40 for the second. Therefore, with match_mlperf=True, it's guaranteed the
  first item's score is in the top 2. With match_mlperf=False, this function
  would compute the first user's first item is not in the top 2, because item 20
  has a higher score, and item 20 occurs twice.

  Args:
316
317
318
    logits: A tensor containing the predicted logits for each user. The shape of
      logits is (num_users_per_batch * (1 + NUM_EVAL_NEGATIVES),) Logits for a
      user are grouped, and the last element of the group is the true element.
319
    softmax_logits: The same tensor, but with zeros left-appended.
320
321
322
    duplicate_mask: A vector with the same shape as logits, with a value of 1 if
      the item corresponding to the logit at that position has already appeared
      for that user.
323
324
325
326
    num_training_neg: The number of negatives per positive during training.
    match_mlperf: Use the MLPerf reference convention for computing rank.

  Returns:
Shining Sun's avatar
Shining Sun committed
327
328
329
330
331
    cross_entropy: the loss
    metric_fn: the metrics function
    in_top_k: hit rate metric
    ndcg: ndcg metric
    metric_weights: metric weights
332
  """
333
334
  in_top_k, ndcg, metric_weights, logits_by_user = compute_top_k_and_ndcg(
      logits, duplicate_mask, match_mlperf)
335
336
337

  # Examples are provided by the eval Dataset in a structured format, so eval
  # labels can be reconstructed on the fly.
338
339
340
  eval_labels = tf.reshape(shape=(-1,), tensor=tf.one_hot(
      tf.zeros(shape=(logits_by_user.shape[0],), dtype=tf.int32) +
      rconst.NUM_EVAL_NEGATIVES, logits_by_user.shape[1], dtype=tf.int32))
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

  eval_labels_float = tf.cast(eval_labels, tf.float32)

  # During evaluation, the ratio of negatives to positives is much higher
  # than during training. (Typically 999 to 1 vs. 4 to 1) By adjusting the
  # weights for the negative examples we compute a loss which is consistent with
  # the training data. (And provides apples-to-apples comparison)
  negative_scale_factor = num_training_neg / rconst.NUM_EVAL_NEGATIVES
  example_weights = (
      (eval_labels_float + (1 - eval_labels_float) * negative_scale_factor) *
      (1 + rconst.NUM_EVAL_NEGATIVES) / (1 + num_training_neg))

  # Tile metric weights back to logit dimensions
  expanded_metric_weights = tf.reshape(tf.tile(
      metric_weights[:, tf.newaxis], (1, rconst.NUM_EVAL_NEGATIVES + 1)), (-1,))

  # ignore padded examples
  example_weights *= tf.cast(expanded_metric_weights, tf.float32)

360
  cross_entropy = tf.compat.v1.losses.sparse_softmax_cross_entropy(
361
362
363
364
      logits=softmax_logits, labels=eval_labels, weights=example_weights)

  def metric_fn(top_k_tensor, ndcg_tensor, weight_tensor):
    return {
365
366
367
368
369
370
        rconst.HR_KEY: tf.compat.v1.metrics.mean(top_k_tensor,
                                                 weights=weight_tensor,
                                                 name=rconst.HR_METRIC_NAME),
        rconst.NDCG_KEY: tf.compat.v1.metrics.mean(ndcg_tensor,
                                                   weights=weight_tensor,
                                                   name=rconst.NDCG_METRIC_NAME)
371
372
    }

Shining Sun's avatar
Shining Sun committed
373
  return cross_entropy, metric_fn, in_top_k, ndcg, metric_weights
374
375


376
377
378
def compute_top_k_and_ndcg(logits: tf.Tensor,
                           duplicate_mask: tf.Tensor,
                           match_mlperf: bool = False):
379
380
381
  """Compute inputs of metric calculation.

  Args:
382
383
384
385
386
387
    logits: A tensor containing the predicted logits for each user. The shape of
      logits is (num_users_per_batch * (1 + NUM_EVAL_NEGATIVES),) Logits for a
      user are grouped, and the first element of the group is the true element.
    duplicate_mask: A vector with the same shape as logits, with a value of 1 if
      the item corresponding to the logit at that position has already appeared
      for that user.
388
389
390
391
392
393
394
395
    match_mlperf: Use the MLPerf reference convention for computing rank.

  Returns:
    is_top_k, ndcg and weights, all of which has size (num_users_in_batch,), and
    logits_by_user which has size
    (num_users_in_batch, (rconst.NUM_EVAL_NEGATIVES + 1)).
  """
  logits_by_user = tf.reshape(logits, (-1, rconst.NUM_EVAL_NEGATIVES + 1))
396
397
  duplicate_mask_by_user = tf.cast(
      tf.reshape(duplicate_mask, (-1, rconst.NUM_EVAL_NEGATIVES + 1)),
398
      logits_by_user.dtype)
399
400
401
402
403
404
405
406
407

  if match_mlperf:
    # Set duplicate logits to the min value for that dtype. The MLPerf
    # reference dedupes during evaluation.
    logits_by_user *= (1 - duplicate_mask_by_user)
    logits_by_user += duplicate_mask_by_user * logits_by_user.dtype.min

  # Determine the location of the first element in each row after the elements
  # are sorted.
408
  sort_indices = tf.argsort(
409
410
411
412
413
414
415
      logits_by_user, axis=1, direction="DESCENDING")

  # Use matrix multiplication to extract the position of the true item from the
  # tensor of sorted indices. This approach is chosen because both GPUs and TPUs
  # perform matrix multiplications very quickly. This is similar to np.argwhere.
  # However this is a special case because the target will only appear in
  # sort_indices once.
416
417
  one_hot_position = tf.cast(tf.equal(sort_indices, rconst.NUM_EVAL_NEGATIVES),
                             tf.int32)
418
419
420
421
422
  sparse_positions = tf.multiply(
      one_hot_position, tf.range(logits_by_user.shape[1])[tf.newaxis, :])
  position_vector = tf.reduce_sum(sparse_positions, axis=1)

  in_top_k = tf.cast(tf.less(position_vector, rconst.TOP_K), tf.float32)
423
424
  ndcg = tf.math.log(2.) / tf.math.log(
      tf.cast(position_vector, tf.float32) + 2)
425
426
427
428
429
430
431
  ndcg *= in_top_k

  # If a row is a padded row, all but the first element will be a duplicate.
  metric_weights = tf.not_equal(tf.reduce_sum(duplicate_mask_by_user, axis=1),
                                rconst.NUM_EVAL_NEGATIVES)

  return in_top_k, ndcg, metric_weights, logits_by_user