neumf_model.py 16.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Defines NeuMF model for NCF framework.

Some abbreviations used in the code base:
NeuMF: Neural Matrix Factorization
NCF: Neural Collaborative Filtering
GMF: Generalized Matrix Factorization
MLP: Multi-Layer Perceptron

GMF applies a linear kernel to model the latent feature interactions, and MLP
uses a nonlinear kernel to learn the interaction function from data. NeuMF model
is a fused model of GMF and MLP to better model the complex user-item
interactions, and unifies the strengths of linearity of MF and non-linearity of
MLP for modeling the user-item latent structures.

In NeuMF model, it allows GMF and MLP to learn separate embeddings, and combine
the two models by concatenating their last hidden layer.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

36
37
38
import sys
import typing

39
40
41
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf

Shawn Wang's avatar
Shawn Wang committed
42
43
44
from official.datasets import movielens  # pylint: disable=g-bad-import-order
from official.recommendation import constants as rconst
from official.recommendation import stat_utils
45
from official.utils.logs import mlperf_helper
46
47


48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
def _sparse_to_dense_grads(grads_and_vars):
  """Convert sparse gradients to dense gradients.

  All sparse gradients, which are represented as instances of tf.IndexedSlices,
  are converted to dense Tensors. Dense gradients, which are represents as
  Tensors, are unchanged.

  The purpose of this conversion is that for small embeddings, which are used by
  this model, applying dense gradients with the AdamOptimizer is faster than
  applying sparse gradients.

  Args
    grads_and_vars: A list of (gradient, variable) tuples. Each gradient can
      be a Tensor or an IndexedSlices. Tensors are unchanged, and IndexedSlices
      are converted to dense Tensors.
  Returns:
    The same list of (gradient, variable) as `grads_and_vars`, except each
    IndexedSlices gradient is converted to a Tensor.
  """

  # Calling convert_to_tensor changes IndexedSlices into Tensors, and leaves
  # Tensors unchanged.
  return [(tf.convert_to_tensor(g), v) for g, v in grads_and_vars]


73
74
def neumf_model_fn(features, labels, mode, params):
  """Model Function for NeuMF estimator."""
75
76
77
  if params.get("use_seed"):
    tf.set_random_seed(stat_utils.random_int32())

78
  users = features[movielens.USER_COLUMN]
79
  items = features[movielens.ITEM_COLUMN]
80

81
  logits = construct_model(users, items, params).output
82

83
84
85
86
  # Softmax with the first column of zeros is equivalent to sigmoid.
  softmax_logits = tf.concat([tf.zeros(logits.shape, dtype=logits.dtype),
                              logits], axis=1)

87
  if mode == tf.estimator.ModeKeys.EVAL:
88
89
90
    duplicate_mask = tf.cast(features[rconst.DUPLICATE_MASK], tf.float32)
    return compute_eval_loss_and_metrics(
        logits, softmax_logits, duplicate_mask, params["num_neg"],
Reed's avatar
Reed committed
91
        params["match_mlperf"],
92
        use_tpu_spec=params["use_xla_for_gpu"])
93

94
95
  elif mode == tf.estimator.ModeKeys.TRAIN:
    labels = tf.cast(labels, tf.int32)
96
    valid_pt_mask = features[rconst.VALID_POINT_MASK]
97
98
99
100
101
102
103
104
105
106
107

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.OPT_NAME, value="adam")
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.OPT_LR,
                            value=params["learning_rate"])
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.OPT_HP_ADAM_BETA1,
                            value=params["beta1"])
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.OPT_HP_ADAM_BETA2,
                            value=params["beta2"])
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.OPT_HP_ADAM_EPSILON,
                            value=params["epsilon"])

108
109
110
    optimizer = tf.train.AdamOptimizer(
        learning_rate=params["learning_rate"], beta1=params["beta1"],
        beta2=params["beta2"], epsilon=params["epsilon"])
111
112
113
    if params["use_tpu"]:
      optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)

114
115
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.MODEL_HP_LOSS_FN,
                            value=mlperf_helper.TAGS.BCE)
116
117
    loss = tf.losses.sparse_softmax_cross_entropy(
        labels=labels,
118
119
        logits=softmax_logits,
        weights=tf.cast(valid_pt_mask, tf.float32)
120
121
    )

122
123
124
    # This tensor is used by logging hooks.
    tf.identity(loss, name="cross_entropy")

125
126
127
128
    global_step = tf.train.get_global_step()
    tvars = tf.trainable_variables()
    gradients = optimizer.compute_gradients(
        loss, tvars, colocate_gradients_with_ops=True)
129
    gradients = _sparse_to_dense_grads(gradients)
130
131
132
133
134
135
136
137
138
139
140
141
    minimize_op = optimizer.apply_gradients(
        gradients, global_step=global_step, name="train")
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    train_op = tf.group(minimize_op, update_ops)

    return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)

  else:
    raise NotImplementedError


def construct_model(users, items, params):
142
  # type: (tf.Tensor, tf.Tensor, dict) -> tf.keras.Model
143
144
145
146
147
148
149
150
  """Initialize NeuMF model.

  Args:
    users: Tensor of user ids.
    items: Tensor of item ids.
    params: Dict of hyperparameters.
  Raises:
    ValueError: if the first model layer is not even.
151
  Returns:
152
    model:  a keras Model for computing the logits
153
154
155
156
157
158
159
160
161
162
163
  """
  num_users = params["num_users"]
  num_items = params["num_items"]

  model_layers = params["model_layers"]

  mf_regularization = params["mf_regularization"]
  mlp_reg_layers = params["mlp_reg_layers"]

  mf_dim = params["mf_dim"]

164
165
166
167
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.MODEL_HP_MF_DIM, value=mf_dim)
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.MODEL_HP_MLP_LAYER_SIZES,
                          value=model_layers)

168
169
170
171
  if model_layers[0] % 2 != 0:
    raise ValueError("The first layer size should be multiple of 2!")

  # Input variables
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
  user_input = tf.keras.layers.Input(tensor=users, name="user_input")
  item_input = tf.keras.layers.Input(tensor=items, name="item_input")

  # Initializer for embedding layers
  embedding_initializer = "glorot_uniform"

  # It turns out to be significantly more effecient to store the MF and MLP
  # embedding portions in the same table, and then slice as needed.
  mf_slice_fn = lambda x: x[:, :mf_dim]
  mlp_slice_fn = lambda x: x[:, mf_dim:]
  embedding_user = tf.keras.layers.Embedding(
      num_users, mf_dim + model_layers[0] // 2,
      embeddings_initializer=embedding_initializer,
      embeddings_regularizer=tf.keras.regularizers.l2(mf_regularization),
      input_length=1, name="embedding_user")(user_input)

  embedding_item = tf.keras.layers.Embedding(
      num_items, mf_dim + model_layers[0] // 2,
      embeddings_initializer=embedding_initializer,
      embeddings_regularizer=tf.keras.regularizers.l2(mf_regularization),
      input_length=1, name="embedding_item")(item_input)

  # GMF part
  mf_user_latent = tf.keras.layers.Lambda(
      mf_slice_fn, name="embedding_user_mf")(embedding_user)
  mf_item_latent = tf.keras.layers.Lambda(
      mf_slice_fn, name="embedding_item_mf")(embedding_item)

  # MLP part
  mlp_user_latent = tf.keras.layers.Lambda(
      mlp_slice_fn, name="embedding_user_mlp")(embedding_user)
  mlp_item_latent = tf.keras.layers.Lambda(
      mlp_slice_fn, name="embedding_item_mlp")(embedding_item)
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

  # Element-wise multiply
  mf_vector = tf.keras.layers.multiply([mf_user_latent, mf_item_latent])

  # Concatenation of two latent features
  mlp_vector = tf.keras.layers.concatenate([mlp_user_latent, mlp_item_latent])

  num_layer = len(model_layers)  # Number of layers in the MLP
  for layer in xrange(1, num_layer):
    model_layer = tf.keras.layers.Dense(
        model_layers[layer],
        kernel_regularizer=tf.keras.regularizers.l2(mlp_reg_layers[layer]),
        activation="relu")
    mlp_vector = model_layer(mlp_vector)

  # Concatenate GMF and MLP parts
  predict_vector = tf.keras.layers.concatenate([mf_vector, mlp_vector])

  # Final prediction layer
  logits = tf.keras.layers.Dense(
      1, activation=None, kernel_initializer="lecun_uniform",
      name=movielens.RATING_COLUMN)(predict_vector)

  # Print model topology.
229
230
  model = tf.keras.models.Model([user_input, item_input], logits)
  model.summary()
231
232
  sys.stdout.flush()

233
  return model
234
235
236
237
238
239
240


def compute_eval_loss_and_metrics(logits,              # type: tf.Tensor
                                  softmax_logits,      # type: tf.Tensor
                                  duplicate_mask,      # type: tf.Tensor
                                  num_training_neg,    # type: int
                                  match_mlperf=False,  # type: bool
Reed's avatar
Reed committed
241
                                  use_tpu_spec=False   # type: bool
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
                                 ):
  # type: (...) -> tf.estimator.EstimatorSpec
  """Model evaluation with HR and NDCG metrics.

  The evaluation protocol is to rank the test interacted item (truth items)
  among the randomly chosen 999 items that are not interacted by the user.
  The performance of the ranked list is judged by Hit Ratio (HR) and Normalized
  Discounted Cumulative Gain (NDCG).

  For evaluation, the ranked list is truncated at 10 for both metrics. As such,
  the HR intuitively measures whether the test item is present on the top-10
  list, and the NDCG accounts for the position of the hit by assigning higher
  scores to hits at top ranks. Both metrics are calculated for each test user,
  and the average scores are reported.

  If `match_mlperf` is True, then the HR and NDCG computations are done in a
  slightly unusual way to match the MLPerf reference implementation.
  Specifically, if the evaluation negatives contain duplicate items, it will be
  treated as if the item only appeared once. Effectively, for duplicate items in
  a row, the predicted score for all but one of the items will be set to
  -infinity

  For example, suppose we have that following inputs:
  logits_by_user:     [[ 2,  3,  3],
                       [ 5,  4,  4]]

  items_by_user:     [[10, 20, 20],
                      [30, 40, 40]]

  # Note: items_by_user is not explicitly present. Instead the relevant \
          information is contained within `duplicate_mask`

  top_k: 2

  Then with match_mlperf=True, the HR would be 2/2 = 1.0. With
  match_mlperf=False, the HR would be 1/2 = 0.5. This is because each user has
  predicted scores for only 2 unique items: 10 and 20 for the first user, and 30
  and 40 for the second. Therefore, with match_mlperf=True, it's guaranteed the
  first item's score is in the top 2. With match_mlperf=False, this function
  would compute the first user's first item is not in the top 2, because item 20
  has a higher score, and item 20 occurs twice.

  Args:
    logits: A tensor containing the predicted logits for each user. The shape
      of logits is (num_users_per_batch * (1 + NUM_EVAL_NEGATIVES),) Logits
287
      for a user are grouped, and the last element of the group is the true
288
289
290
291
292
293
294
295
296
297
298
299
      element.

    softmax_logits: The same tensor, but with zeros left-appended.

    duplicate_mask: A vector with the same shape as logits, with a value of 1
      if the item corresponding to the logit at that position has already
      appeared for that user.

    num_training_neg: The number of negatives per positive during training.

    match_mlperf: Use the MLPerf reference convention for computing rank.

Reed's avatar
Reed committed
300
301
302
    use_tpu_spec: Should a TPUEstimatorSpec be returned instead of an
      EstimatorSpec. Required for TPUs and if XLA is done on a GPU. Despite its
      name, TPUEstimatorSpecs work with GPUs
303
304
305
306

  Returns:
    An EstimatorSpec for evaluation.
  """
307
308
  in_top_k, ndcg, metric_weights, logits_by_user = compute_top_k_and_ndcg(
      logits, duplicate_mask, match_mlperf)
309
310
311

  # Examples are provided by the eval Dataset in a structured format, so eval
  # labels can be reconstructed on the fly.
312
313
314
  eval_labels = tf.reshape(shape=(-1,), tensor=tf.one_hot(
      tf.zeros(shape=(logits_by_user.shape[0],), dtype=tf.int32) +
      rconst.NUM_EVAL_NEGATIVES, logits_by_user.shape[1], dtype=tf.int32))
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

  eval_labels_float = tf.cast(eval_labels, tf.float32)

  # During evaluation, the ratio of negatives to positives is much higher
  # than during training. (Typically 999 to 1 vs. 4 to 1) By adjusting the
  # weights for the negative examples we compute a loss which is consistent with
  # the training data. (And provides apples-to-apples comparison)
  negative_scale_factor = num_training_neg / rconst.NUM_EVAL_NEGATIVES
  example_weights = (
      (eval_labels_float + (1 - eval_labels_float) * negative_scale_factor) *
      (1 + rconst.NUM_EVAL_NEGATIVES) / (1 + num_training_neg))

  # Tile metric weights back to logit dimensions
  expanded_metric_weights = tf.reshape(tf.tile(
      metric_weights[:, tf.newaxis], (1, rconst.NUM_EVAL_NEGATIVES + 1)), (-1,))

  # ignore padded examples
  example_weights *= tf.cast(expanded_metric_weights, tf.float32)

  cross_entropy = tf.losses.sparse_softmax_cross_entropy(
      logits=softmax_logits, labels=eval_labels, weights=example_weights)

  def metric_fn(top_k_tensor, ndcg_tensor, weight_tensor):
    return {
Reed's avatar
Reed committed
339
340
341
342
        rconst.HR_KEY: tf.metrics.mean(top_k_tensor, weights=weight_tensor,
                                       name=rconst.HR_METRIC_NAME),
        rconst.NDCG_KEY: tf.metrics.mean(ndcg_tensor, weights=weight_tensor,
                                         name=rconst.NDCG_METRIC_NAME),
343
344
    }

Reed's avatar
Reed committed
345
  if use_tpu_spec:
346
347
348
349
350
351
352
353
354
    return tf.contrib.tpu.TPUEstimatorSpec(
        mode=tf.estimator.ModeKeys.EVAL, loss=cross_entropy,
        eval_metrics=(metric_fn, [in_top_k, ndcg, metric_weights]))

  return tf.estimator.EstimatorSpec(
      mode=tf.estimator.ModeKeys.EVAL,
      loss=cross_entropy,
      eval_metric_ops=metric_fn(in_top_k, ndcg, metric_weights)
  )
355
356
357
358
359


def compute_top_k_and_ndcg(logits,              # type: tf.Tensor
                           duplicate_mask,      # type: tf.Tensor
                           match_mlperf=False   # type: bool
Shawn Wang's avatar
Delint.  
Shawn Wang committed
360
                          ):
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
  """Compute inputs of metric calculation.

  Args:
    logits: A tensor containing the predicted logits for each user. The shape
      of logits is (num_users_per_batch * (1 + NUM_EVAL_NEGATIVES),) Logits
      for a user are grouped, and the first element of the group is the true
      element.
    duplicate_mask: A vector with the same shape as logits, with a value of 1
      if the item corresponding to the logit at that position has already
      appeared for that user.
    match_mlperf: Use the MLPerf reference convention for computing rank.

  Returns:
    is_top_k, ndcg and weights, all of which has size (num_users_in_batch,), and
    logits_by_user which has size
    (num_users_in_batch, (rconst.NUM_EVAL_NEGATIVES + 1)).
  """
  logits_by_user = tf.reshape(logits, (-1, rconst.NUM_EVAL_NEGATIVES + 1))
  duplicate_mask_by_user = tf.reshape(duplicate_mask,
                                      (-1, rconst.NUM_EVAL_NEGATIVES + 1))

  if match_mlperf:
    # Set duplicate logits to the min value for that dtype. The MLPerf
    # reference dedupes during evaluation.
    logits_by_user *= (1 - duplicate_mask_by_user)
    logits_by_user += duplicate_mask_by_user * logits_by_user.dtype.min

  # Determine the location of the first element in each row after the elements
  # are sorted.
  sort_indices = tf.contrib.framework.argsort(
      logits_by_user, axis=1, direction="DESCENDING")

  # Use matrix multiplication to extract the position of the true item from the
  # tensor of sorted indices. This approach is chosen because both GPUs and TPUs
  # perform matrix multiplications very quickly. This is similar to np.argwhere.
  # However this is a special case because the target will only appear in
  # sort_indices once.
398
399
  one_hot_position = tf.cast(tf.equal(sort_indices, rconst.NUM_EVAL_NEGATIVES),
                             tf.int32)
400
401
402
403
404
405
406
407
408
409
410
411
412
  sparse_positions = tf.multiply(
      one_hot_position, tf.range(logits_by_user.shape[1])[tf.newaxis, :])
  position_vector = tf.reduce_sum(sparse_positions, axis=1)

  in_top_k = tf.cast(tf.less(position_vector, rconst.TOP_K), tf.float32)
  ndcg = tf.log(2.) / tf.log(tf.cast(position_vector, tf.float32) + 2)
  ndcg *= in_top_k

  # If a row is a padded row, all but the first element will be a duplicate.
  metric_weights = tf.not_equal(tf.reduce_sum(duplicate_mask_by_user, axis=1),
                                rconst.NUM_EVAL_NEGATIVES)

  return in_top_k, ndcg, metric_weights, logits_by_user