run_classifier.py 13.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT classification finetuning runner in tf2.0."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import math
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
23
import os
24
25
26
27
28
29

from absl import app
from absl import flags
from absl import logging
import tensorflow as tf

30
31
32
33
34
35
36
37
# pylint: disable=g-import-not-at-top,redefined-outer-name,reimported
from official.modeling import model_training_utils
from official.nlp import bert_modeling as modeling
from official.nlp import bert_models
from official.nlp import optimization
from official.nlp.bert import common_flags
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_saving_utils
38
from official.utils.misc import keras_utils
39
from official.utils.misc import tpu_lib
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

flags.DEFINE_enum(
    'mode', 'train_and_eval', ['train_and_eval', 'export_only'],
    'One of {"train_and_eval", "export_only"}. `train_and_eval`: '
    'trains the model and evaluates in the meantime. '
    '`export_only`: will take the latest checkpoint inside '
    'model_dir and export a `SavedModel`.')
flags.DEFINE_string('train_data_path', None,
                    'Path to training data for BERT classifier.')
flags.DEFINE_string('eval_data_path', None,
                    'Path to evaluation data for BERT classifier.')
# Model training specific flags.
flags.DEFINE_string(
    'input_meta_data_path', None,
    'Path to file that contains meta data about input '
    'to be used for training and evaluation.')
flags.DEFINE_integer('train_batch_size', 32, 'Batch size for training.')
57
flags.DEFINE_integer('eval_batch_size', 32, 'Batch size for evaluation.')
58
59

common_flags.define_common_bert_flags()
60
61
62
63

FLAGS = flags.FLAGS


64
def get_loss_fn(num_classes, loss_factor=1.0):
65
66
67
68
69
70
71
72
73
74
75
  """Gets the classification loss function."""

  def classification_loss_fn(labels, logits):
    """Classification loss."""
    labels = tf.squeeze(labels)
    log_probs = tf.nn.log_softmax(logits, axis=-1)
    one_hot_labels = tf.one_hot(
        tf.cast(labels, dtype=tf.int32), depth=num_classes, dtype=tf.float32)
    per_example_loss = -tf.reduce_sum(
        tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1)
    loss = tf.reduce_mean(per_example_loss)
76
    loss *= loss_factor
77
78
79
80
81
    return loss

  return classification_loss_fn


Hongkun Yu's avatar
Hongkun Yu committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
def get_dataset_fn(input_file_pattern, max_seq_length, global_batch_size,
                   is_training):
  """Gets a closure to create a dataset."""

  def _dataset_fn(ctx=None):
    """Returns tf.data.Dataset for distributed BERT pretraining."""
    batch_size = ctx.get_per_replica_batch_size(
        global_batch_size) if ctx else global_batch_size
    dataset = input_pipeline.create_classifier_dataset(
        input_file_pattern,
        max_seq_length,
        batch_size,
        is_training=is_training,
        input_pipeline_context=ctx)
    return dataset

  return _dataset_fn


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
101
102
103
104
105
106
107
108
109
110
111
def run_bert_classifier(strategy,
                        bert_config,
                        input_meta_data,
                        model_dir,
                        epochs,
                        steps_per_epoch,
                        steps_per_loop,
                        eval_steps,
                        warmup_steps,
                        initial_lr,
                        init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
112
113
                        train_input_fn,
                        eval_input_fn,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
114
                        custom_callbacks=None,
115
116
                        run_eagerly=False,
                        use_keras_compile_fit=False):
117
118
119
120
121
  """Run BERT classifier training using low-level API."""
  max_seq_length = input_meta_data['max_seq_length']
  num_classes = input_meta_data['num_labels']

  def _get_classifier_model():
122
    """Gets a classifier model."""
123
    classifier_model, core_model = (
124
125
126
127
128
129
        bert_models.classifier_model(
            bert_config,
            tf.float32,
            num_classes,
            max_seq_length,
            hub_module_url=FLAGS.hub_module_url))
130
131
    classifier_model.optimizer = optimization.create_optimizer(
        initial_lr, steps_per_epoch * epochs, warmup_steps)
132
133
134
135
136
137
138
    if FLAGS.fp16_implementation == 'graph_rewrite':
      # Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
      # determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
      # which will ensure tf.compat.v2.keras.mixed_precision and
      # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
      # up.
      classifier_model.optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
139
          classifier_model.optimizer)
140
141
    return classifier_model, core_model

142
143
144
145
146
147
148
149
150
151
152
  # During distributed training, loss used for gradient computation is
  # summed over from all replicas. When Keras compile/fit() API is used,
  # the fit() API internally normalizes the loss by dividing the loss by
  # the number of replicas used for computation. However, when custom
  # training loop is used this is not done automatically and should be
  # done manually by the end user.
  loss_multiplier = 1.0
  if FLAGS.scale_loss and not use_keras_compile_fit:
    loss_multiplier = 1.0 / strategy.num_replicas_in_sync

  loss_fn = get_loss_fn(num_classes, loss_factor=loss_multiplier)
153
154
155
156
157
158
159

  # Defines evaluation metrics function, which will create metrics in the
  # correct device and strategy scope.
  def metric_fn():
    return tf.keras.metrics.SparseCategoricalAccuracy(
        'test_accuracy', dtype=tf.float32)

160
  if use_keras_compile_fit:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
161
162
    # Start training using Keras compile/fit API.
    logging.info('Training using TF 2.0 Keras compile/fit API with '
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
163
                 'distribution strategy.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    return run_keras_compile_fit(
        model_dir,
        strategy,
        _get_classifier_model,
        train_input_fn,
        eval_input_fn,
        loss_fn,
        metric_fn,
        init_checkpoint,
        epochs,
        steps_per_epoch,
        eval_steps,
        custom_callbacks=None)

  # Use user-defined loop to start training.
  logging.info('Training using customized training loop TF 2.0 with '
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
180
               'distribution strategy.')
181
182
183
184
185
186
  return model_training_utils.run_customized_training_loop(
      strategy=strategy,
      model_fn=_get_classifier_model,
      loss_fn=loss_fn,
      model_dir=model_dir,
      steps_per_epoch=steps_per_epoch,
187
      steps_per_loop=steps_per_loop,
188
189
190
191
192
193
      epochs=epochs,
      train_input_fn=train_input_fn,
      eval_input_fn=eval_input_fn,
      eval_steps=eval_steps,
      init_checkpoint=init_checkpoint,
      metric_fn=metric_fn,
194
195
      custom_callbacks=custom_callbacks,
      run_eagerly=run_eagerly)
196
197


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
def run_keras_compile_fit(model_dir,
                          strategy,
                          model_fn,
                          train_input_fn,
                          eval_input_fn,
                          loss_fn,
                          metric_fn,
                          init_checkpoint,
                          epochs,
                          steps_per_epoch,
                          eval_steps,
                          custom_callbacks=None):
  """Runs BERT classifier model using Keras compile/fit API."""

  with strategy.scope():
    training_dataset = train_input_fn()
    evaluation_dataset = eval_input_fn()
    bert_model, sub_model = model_fn()
    optimizer = bert_model.optimizer

    if init_checkpoint:
      checkpoint = tf.train.Checkpoint(model=sub_model)
      checkpoint.restore(init_checkpoint).assert_existing_objects_matched()

    bert_model.compile(optimizer=optimizer, loss=loss_fn, metrics=[metric_fn()])

224
225
226
227
228
    summary_dir = os.path.join(model_dir, 'summaries')
    summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
    checkpoint_path = os.path.join(model_dir, 'checkpoint')
    checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
        checkpoint_path, save_weights_only=True)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

    if custom_callbacks is not None:
      custom_callbacks += [summary_callback, checkpoint_callback]
    else:
      custom_callbacks = [summary_callback, checkpoint_callback]

    bert_model.fit(
        x=training_dataset,
        validation_data=evaluation_dataset,
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        validation_steps=eval_steps,
        callbacks=custom_callbacks)

    return bert_model


246
def export_classifier(model_export_path, input_meta_data,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
247
248
                      restore_model_using_load_weights,
                      bert_config, model_dir):
249
250
251
252
253
  """Exports a trained model as a `SavedModel` for inference.

  Args:
    model_export_path: a string specifying the path to the SavedModel directory.
    input_meta_data: dictionary containing meta data about input and model.
254
255
256
257
258
259
    restore_model_using_load_weights: Whether to use checkpoint.restore() API
      for custom checkpoint or to use model.load_weights() API.
      There are 2 different ways to save checkpoints. One is using
      tf.train.Checkpoint and another is using Keras model.save_weights().
      Custom training loop implementation uses tf.train.Checkpoint API
      and Keras ModelCheckpoint callback internally uses model.save_weights()
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
260
      API. Since these two API's cannot be used together, model loading logic
261
      must be take into account how model checkpoint was saved.
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
262
263
264
    bert_config: Bert configuration file to define core bert layers.
    model_dir: The directory where the model weights and training/evaluation
      summaries are stored.
265
266
267
268
269
270

  Raises:
    Export path is not specified, got an empty string or None.
  """
  if not model_export_path:
    raise ValueError('Export path is not specified: %s' % model_export_path)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
271
272
  if not model_dir:
    raise ValueError('Export path is not specified: %s' % model_dir)
273

274
275
276
  classifier_model = bert_models.classifier_model(
      bert_config, tf.float32, input_meta_data['num_labels'],
      input_meta_data['max_seq_length'])[0]
277

278
  model_saving_utils.export_bert_model(
279
280
      model_export_path,
      model=classifier_model,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
281
      checkpoint_dir=model_dir,
282
      restore_model_using_load_weights=restore_model_using_load_weights)
283
284


Hongkun Yu's avatar
Hongkun Yu committed
285
286
287
288
def run_bert(strategy,
             input_meta_data,
             train_input_fn=None,
             eval_input_fn=None):
289
  """Run BERT training."""
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
290
  bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
291
  if FLAGS.mode == 'export_only':
292
293
294
295
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
    export_classifier(FLAGS.model_export_path, input_meta_data,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
296
297
                      FLAGS.use_keras_compile_fit,
                      bert_config, FLAGS.model_dir)
298
299
300
301
    return

  if FLAGS.mode != 'train_and_eval':
    raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
302
303
  # Enables XLA in Session Config. Should not be set for TPU.
  keras_utils.set_config_v2(FLAGS.enable_xla)
304
305
306
307
308
309
310
311
312
313

  epochs = FLAGS.num_train_epochs
  train_data_size = input_meta_data['train_data_size']
  steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
  warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
  eval_steps = int(
      math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))

  if not strategy:
    raise ValueError('Distribution strategy has not been specified.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
314
315

  trained_model = run_bert_classifier(
316
317
318
319
320
321
      strategy,
      bert_config,
      input_meta_data,
      FLAGS.model_dir,
      epochs,
      steps_per_epoch,
322
      FLAGS.steps_per_loop,
323
324
325
326
      eval_steps,
      warmup_steps,
      FLAGS.learning_rate,
      FLAGS.init_checkpoint,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
327
328
      train_input_fn,
      eval_input_fn,
329
330
      run_eagerly=FLAGS.run_eagerly,
      use_keras_compile_fit=FLAGS.use_keras_compile_fit)
331

332
  if FLAGS.model_export_path:
333
334
335
    # As Keras ModelCheckpoint callback used with Keras compile/fit() API
    # internally uses model.save_weights() to save checkpoints, we must
    # use model.load_weights() when Keras compile/fit() is used.
336
    model_saving_utils.export_bert_model(
337
338
339
        FLAGS.model_export_path,
        model=trained_model,
        restore_model_using_load_weights=FLAGS.use_keras_compile_fit)
340
341
  return trained_model

342
343
344
345

def main(_):
  # Users should always run this script under TF 2.x
  assert tf.version.VERSION.startswith('2.')
346

347
348
349
350
351
352
353
354
355
356
  with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
    input_meta_data = json.loads(reader.read().decode('utf-8'))

  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'

  strategy = None
  if FLAGS.strategy_type == 'mirror':
    strategy = tf.distribute.MirroredStrategy()
  elif FLAGS.strategy_type == 'tpu':
357
    cluster_resolver = tpu_lib.tpu_initialize(FLAGS.tpu)
358
    strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)
359
360
361
  else:
    raise ValueError('The distribution strategy type is not supported: %s' %
                     FLAGS.strategy_type)
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
362
363

  max_seq_length = input_meta_data['max_seq_length']
Hongkun Yu's avatar
Hongkun Yu committed
364
  train_input_fn = get_dataset_fn(
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
365
      FLAGS.train_data_path,
Hongkun Yu's avatar
Hongkun Yu committed
366
367
368
369
      max_seq_length,
      FLAGS.train_batch_size,
      is_training=True)
  eval_input_fn = get_dataset_fn(
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
370
      FLAGS.eval_data_path,
Hongkun Yu's avatar
Hongkun Yu committed
371
372
373
374
      max_seq_length,
      FLAGS.eval_batch_size,
      is_training=False)

Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
375
  run_bert(strategy, input_meta_data, train_input_fn, eval_input_fn)
376
377
378
379
380


if __name__ == '__main__':
  flags.mark_flag_as_required('bert_config_file')
  flags.mark_flag_as_required('input_meta_data_path')
381
  flags.mark_flag_as_required('model_dir')
382
  app.run(main)