keras_utils.py 9.31 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Helper functions for the Keras implementations of models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
22
import multiprocessing
import os
23
24
import time

25
from absl import logging
26
import tensorflow as tf
Toby Boyd's avatar
Toby Boyd committed
27
from tensorflow.core.protobuf import rewriter_config_pb2
Toby Boyd's avatar
Toby Boyd committed
28
from tensorflow.python import tf2
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
29
from tensorflow.python.eager import profiler
30
31
32
33
34
35
36
37
38


class BatchTimestamp(object):
  """A structure to store batch time stamp."""

  def __init__(self, batch_index, timestamp):
    self.batch_index = batch_index
    self.timestamp = timestamp

39
40
41
42
  def __repr__(self):
    return "'BatchTimestamp<batch_index: {}, timestamp: {}>'".format(
        self.batch_index, self.timestamp)

43
44
45
46

class TimeHistory(tf.keras.callbacks.Callback):
  """Callback for Keras models."""

47
  def __init__(self, batch_size, log_steps, logdir=None):
48
    """Callback for logging performance.
Shining Sun's avatar
Shining Sun committed
49

50
51
    Args:
      batch_size: Total batch size.
52
      log_steps: Interval of steps between logging of batch level stats.
53
      logdir: Optional directory to write TensorBoard summaries.
54
    """
55
56
    # TODO(wcromar): remove this parameter and rely on `logs` parameter of
    # on_train_batch_end()
57
58
59
    self.batch_size = batch_size
    super(TimeHistory, self).__init__()
    self.log_steps = log_steps
60
61
62
63
64
65
66
67
68
    self.last_log_step = 0
    self.steps_before_epoch = 0
    self.steps_in_epoch = 0
    self.start_time = None

    if logdir:
      self.summary_writer = tf.summary.create_file_writer(logdir)
    else:
      self.summary_writer = None
69

70
    # Logs start of step 1 then end of each step based on log_steps interval.
71
72
    self.timestamp_log = []

73
74
75
    # Records the time each epoch takes to run from start to finish of epoch.
    self.epoch_runtime_log = []

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
  @property
  def global_steps(self):
    """The current 1-indexed global step."""
    return self.steps_before_epoch + self.steps_in_epoch

  @property
  def average_steps_per_second(self):
    """The average training steps per second across all epochs."""
    return self.global_steps / sum(self.epoch_runtime_log)

  @property
  def average_examples_per_second(self):
    """The average number of training examples per second across all epochs."""
    return self.average_steps_per_second * self.batch_size

91
92
93
  def on_train_end(self, logs=None):
    self.train_finish_time = time.time()

94
95
96
    if self.summary_writer:
      self.summary_writer.flush()

97
98
99
  def on_epoch_begin(self, epoch, logs=None):
    self.epoch_start = time.time()

100
  def on_batch_begin(self, batch, logs=None):
101
    if not self.start_time:
102
      self.start_time = time.time()
103
104
105

    # Record the timestamp of the first global step
    if not self.timestamp_log:
106
107
      self.timestamp_log.append(BatchTimestamp(self.global_steps,
                                               self.start_time))
108
109

  def on_batch_end(self, batch, logs=None):
110
    """Records elapse time of the batch and calculates examples per second."""
111
112
113
114
115
116
117
118
119
    self.steps_in_epoch = batch + 1
    steps_since_last_log = self.global_steps - self.last_log_step
    if steps_since_last_log >= self.log_steps:
      now = time.time()
      elapsed_time = now - self.start_time
      steps_per_second = steps_since_last_log / elapsed_time
      examples_per_second = steps_per_second * self.batch_size

      self.timestamp_log.append(BatchTimestamp(self.global_steps, now))
120
      logging.info(
121
122
123
124
125
126
127
128
129
130
131
132
          "TimeHistory: %.2f examples/second between steps %d and %d",
          examples_per_second, self.last_log_step, self.global_steps)

      if self.summary_writer:
        with self.summary_writer.as_default():
          tf.summary.scalar('global_step/sec', steps_per_second,
                            self.global_steps)
          tf.summary.scalar('examples/sec', examples_per_second,
                            self.global_steps)

      self.last_log_step = self.global_steps
      self.start_time = None
133

134
135
136
  def on_epoch_end(self, epoch, logs=None):
    epoch_run_time = time.time() - self.epoch_start
    self.epoch_runtime_log.append(epoch_run_time)
137
138
139

    self.steps_before_epoch += self.steps_in_epoch
    self.steps_in_epoch = 0
140

141

Zongwei Zhou's avatar
Zongwei Zhou committed
142
143
def get_profiler_callback(model_dir, profile_steps, enable_tensorboard,
                          steps_per_epoch):
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
  """Validate profile_steps flag value and return profiler callback."""
  profile_steps_error_message = (
      'profile_steps must be a comma separated pair of positive integers, '
      'specifying the first and last steps to be profiled.'
  )
  try:
    profile_steps = [int(i) for i in profile_steps.split(',')]
  except ValueError:
    raise ValueError(profile_steps_error_message)
  if len(profile_steps) != 2:
    raise ValueError(profile_steps_error_message)
  start_step, stop_step = profile_steps
  if start_step < 0 or start_step > stop_step:
    raise ValueError(profile_steps_error_message)
  if enable_tensorboard:
159
    logging.warning(
160
161
162
163
        'Both TensorBoard and profiler callbacks are used. Note that the '
        'TensorBoard callback profiles the 2nd step (unless otherwise '
        'specified). Please make sure the steps profiled by the two callbacks '
        'do not overlap.')
Zongwei Zhou's avatar
Zongwei Zhou committed
164
  return ProfilerCallback(model_dir, start_step, stop_step, steps_per_epoch)
165
166
167
168
169


class ProfilerCallback(tf.keras.callbacks.Callback):
  """Save profiles in specified step range to log directory."""

Zongwei Zhou's avatar
Zongwei Zhou committed
170
  def __init__(self, log_dir, start_step, stop_step, steps_per_epoch):
171
172
173
174
    super(ProfilerCallback, self).__init__()
    self.log_dir = log_dir
    self.start_step = start_step
    self.stop_step = stop_step
Zongwei Zhou's avatar
Zongwei Zhou committed
175
176
177
178
179
180
181
182
183
184
185
186
    self.start_epoch = start_step // steps_per_epoch
    self.stop_epoch = stop_step // steps_per_epoch
    self.start_step_in_epoch = start_step % steps_per_epoch
    self.stop_step_in_epoch = stop_step % steps_per_epoch
    self.should_start = False
    self.should_stop = False

  def on_epoch_begin(self, epoch, logs=None):
    if epoch == self.start_epoch:
      self.should_start = True
    if epoch == self.stop_epoch:
      self.should_stop = True
187
188

  def on_batch_begin(self, batch, logs=None):
Zongwei Zhou's avatar
Zongwei Zhou committed
189
190
    if batch == self.start_step_in_epoch and self.should_start:
      self.should_start = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
191
      profiler.start()
192
      logging.info('Profiler started at Step %s', self.start_step)
193
194

  def on_batch_end(self, batch, logs=None):
Zongwei Zhou's avatar
Zongwei Zhou committed
195
196
    if batch == self.stop_step_in_epoch and self.should_stop:
      self.should_stop = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
197
198
199
200
201
      results = profiler.stop()
      profiler.save(self.log_dir, results)
      logging.info(
          'Profiler saved profiles for steps between %s and %s to %s',
          self.start_step, self.stop_step, self.log_dir)
Toby Boyd's avatar
Toby Boyd committed
202
203
204


def set_session_config(enable_eager=False,
205
                       enable_xla=False):
Toby Boyd's avatar
Toby Boyd committed
206
207
  """Sets the session config."""
  if is_v2_0():
208
    set_config_v2(enable_xla=enable_xla)
Toby Boyd's avatar
Toby Boyd committed
209
  else:
210
    config = get_config_proto_v1(enable_xla=enable_xla)
Toby Boyd's avatar
Toby Boyd committed
211
212
213
214
215
216
217
    if enable_eager:
      tf.compat.v1.enable_eager_execution(config=config)
    else:
      sess = tf.Session(config=config)
      tf.keras.backend.set_session(sess)


218
def get_config_proto_v1(enable_xla=False):
Toby Boyd's avatar
Toby Boyd committed
219
220
221
222
223
224
225
226
227
  """Return config proto according to flag settings, or None to use default."""
  config = None
  if enable_xla:
    config = tf.compat.v1.ConfigProto()
    config.graph_options.optimizer_options.global_jit_level = (
        tf.OptimizerOptions.ON_2)
  return config


228
def set_config_v2(enable_xla=False):
Toby Boyd's avatar
Toby Boyd committed
229
230
231
232
  """Config eager context according to flag values using TF 2.0 API."""
  if enable_xla:
    tf.config.optimizer.set_jit(True)

Toby Boyd's avatar
Toby Boyd committed
233

Toby Boyd's avatar
Toby Boyd committed
234
235
def is_v2_0():
  """Returns true if using tf 2.0."""
Toby Boyd's avatar
Toby Boyd committed
236
  return tf2.enabled()
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264


def set_gpu_thread_mode_and_count(gpu_thread_mode,
                                  datasets_num_private_threads,
                                  num_gpus, per_gpu_thread_count):
  """Set GPU thread mode and count, and adjust dataset threads count."""
  cpu_count = multiprocessing.cpu_count()
  logging.info('Logical CPU cores: %s', cpu_count)

  # Allocate private thread pool for each GPU to schedule and launch kernels
  per_gpu_thread_count = per_gpu_thread_count or 2
  os.environ['TF_GPU_THREAD_MODE'] = gpu_thread_mode
  os.environ['TF_GPU_THREAD_COUNT'] = str(per_gpu_thread_count)
  logging.info('TF_GPU_THREAD_COUNT: %s',
               os.environ['TF_GPU_THREAD_COUNT'])
  logging.info('TF_GPU_THREAD_MODE: %s',
               os.environ['TF_GPU_THREAD_MODE'])

  # Limit data preprocessing threadpool to CPU cores minus number of total GPU
  # private threads and memory copy threads.
  total_gpu_thread_count = per_gpu_thread_count * num_gpus
  num_runtime_threads = num_gpus
  if not datasets_num_private_threads:
    datasets_num_private_threads = min(
        cpu_count - total_gpu_thread_count - num_runtime_threads,
        num_gpus * 8)
    logging.info('Set datasets_num_private_threads to %s',
                 datasets_num_private_threads)