semantic_segmentation.py 9.99 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Image segmentation task definition."""

from absl import logging
import tensorflow as tf
20
from official.common import dataset_fn
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
22
23
from official.core import base_task
from official.core import task_factory
from official.vision.beta.configs import semantic_segmentation as exp_cfg
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
from official.vision.beta.dataloaders import input_reader_factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
25
from official.vision.beta.dataloaders import segmentation_input
Abdullah Rashwan's avatar
Abdullah Rashwan committed
26
from official.vision.beta.dataloaders import tfds_segmentation_decoders
Abdullah Rashwan's avatar
Abdullah Rashwan committed
27
28
29
30
31
from official.vision.beta.evaluation import segmentation_metrics
from official.vision.beta.losses import segmentation_losses
from official.vision.beta.modeling import factory


Abdullah Rashwan's avatar
Abdullah Rashwan committed
32
33
@task_factory.register_task_cls(exp_cfg.SemanticSegmentationTask)
class SemanticSegmentationTask(base_task.Task):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
34
  """A task for semantic segmentation."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
35
36

  def build_model(self):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
37
    """Builds segmentation model."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    input_specs = tf.keras.layers.InputSpec(
        shape=[None] + self.task_config.model.input_size)

    l2_weight_decay = self.task_config.losses.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (tf.keras.regularizers.l2(
        l2_weight_decay / 2.0) if l2_weight_decay else None)

    model = factory.build_segmentation_model(
        input_specs=input_specs,
        model_config=self.task_config.model,
        l2_regularizer=l2_regularizer)
    return model

  def initialize(self, model: tf.keras.Model):
    """Loads pretrained checkpoint."""
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if 'all' in self.task_config.init_checkpoint_modules:
      ckpt = tf.train.Checkpoint(**model.checkpoint_items)
      status = ckpt.restore(ckpt_dir_or_file)
      status.assert_consumed()
    else:
      ckpt_items = {}
      if 'backbone' in self.task_config.init_checkpoint_modules:
        ckpt_items.update(backbone=model.backbone)
      if 'decoder' in self.task_config.init_checkpoint_modules:
        ckpt_items.update(decoder=model.decoder)

      ckpt = tf.train.Checkpoint(**ckpt_items)
      status = ckpt.restore(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

  def build_inputs(self, params, input_context=None):
    """Builds classification input."""

    ignore_label = self.task_config.losses.ignore_label

Abdullah Rashwan's avatar
Abdullah Rashwan committed
87
88
89
90
91
92
93
94
95
    if params.tfds_name:
      if params.tfds_name in tfds_segmentation_decoders.TFDS_ID_TO_DECODER_MAP:
        decoder = tfds_segmentation_decoders.TFDS_ID_TO_DECODER_MAP[
            params.tfds_name]()
      else:
        raise ValueError('TFDS {} is not supported'.format(params.tfds_name))
    else:
      decoder = segmentation_input.Decoder()

Abdullah Rashwan's avatar
Abdullah Rashwan committed
96
    parser = segmentation_input.Parser(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
97
98
        output_size=params.output_size,
        train_on_crops=params.train_on_crops,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
99
100
101
102
103
        ignore_label=ignore_label,
        resize_eval_groundtruth=params.resize_eval_groundtruth,
        groundtruth_padded_size=params.groundtruth_padded_size,
        aug_scale_min=params.aug_scale_min,
        aug_scale_max=params.aug_scale_max,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
104
        aug_rand_hflip=params.aug_rand_hflip,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
105
106
        dtype=params.dtype)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
107
    reader = input_reader_factory.input_reader_generator(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
108
        params,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
109
        dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
110
111
112
113
114
115
116
117
        decoder_fn=decoder.decode,
        parser_fn=parser.parse_fn(params.is_training))

    dataset = reader.read(input_context=input_context)

    return dataset

  def build_losses(self, labels, model_outputs, aux_losses=None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
118
    """Segmentation loss.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132

    Args:
      labels: labels.
      model_outputs: Output logits of the classifier.
      aux_losses: auxiliarly loss tensors, i.e. `losses` in keras.Model.

    Returns:
      The total loss tensor.
    """
    loss_params = self._task_config.losses
    segmentation_loss_fn = segmentation_losses.SegmentationLoss(
        loss_params.label_smoothing,
        loss_params.class_weights,
        loss_params.ignore_label,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
133
134
        use_groundtruth_dimension=loss_params.use_groundtruth_dimension,
        top_k_percent_pixels=loss_params.top_k_percent_pixels)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
135
136
137
138
139
140
141
142
143
144
145

    total_loss = segmentation_loss_fn(model_outputs, labels['masks'])

    if aux_losses:
      total_loss += tf.add_n(aux_losses)

    return total_loss

  def build_metrics(self, training=True):
    """Gets streaming metrics for training/validation."""
    metrics = []
146
    if training and self.task_config.evaluation.report_train_mean_iou:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
147
148
149
150
151
      metrics.append(segmentation_metrics.MeanIoU(
          name='mean_iou',
          num_classes=self.task_config.model.num_classes,
          rescale_predictions=False,
          dtype=tf.float32))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
152
    else:
153
154
      self.iou_metric = segmentation_metrics.PerClassIoU(
          name='per_class_iou',
Abdullah Rashwan's avatar
Abdullah Rashwan committed
155
156
          num_classes=self.task_config.model.num_classes,
          rescale_predictions=not self.task_config.validation_data
Abdullah Rashwan's avatar
Abdullah Rashwan committed
157
158
          .resize_eval_groundtruth,
          dtype=tf.float32)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

    return metrics

  def train_step(self, inputs, model, optimizer, metrics=None):
    """Does forward and backward.

    Args:
      inputs: a dictionary of input tensors.
      model: the model, forward pass definition.
      optimizer: the optimizer for this training step.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
Abdullah Rashwan's avatar
Abdullah Rashwan committed
175
176
177
178
179
180
181

    input_partition_dims = self.task_config.train_input_partition_dims
    if input_partition_dims:
      strategy = tf.distribute.get_strategy()
      features = strategy.experimental_split_to_logical_devices(
          features, input_partition_dims)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(features, training=True)
      # Casting output layer as float32 is necessary when mixed_precision is
      # mixed_float16 or mixed_bfloat16 to ensure output is casted as float32.
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
      loss = self.build_losses(
          model_outputs=outputs, labels=labels, aux_losses=model.losses)
      # Scales loss as the default gradients allreduce performs sum inside the
      # optimizer.
      scaled_loss = loss / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
Pankaj Kanwar's avatar
Pankaj Kanwar committed
199
      if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
200
201
202
203
204
205
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient before apply_gradients when LossScaleOptimizer is
    # used.
Pankaj Kanwar's avatar
Pankaj Kanwar committed
206
    if isinstance(optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics})

    return logs

  def validation_step(self, inputs, model, metrics=None):
    """Validatation step.

    Args:
      inputs: a dictionary of input tensors.
      model: the keras.Model.
      metrics: a nested structure of metrics objects.

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs

Abdullah Rashwan's avatar
Abdullah Rashwan committed
230
231
232
233
234
235
    input_partition_dims = self.task_config.eval_input_partition_dims
    if input_partition_dims:
      strategy = tf.distribute.get_strategy()
      features = strategy.experimental_split_to_logical_devices(
          features, input_partition_dims)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
236
237
    outputs = self.inference_step(features, model)
    outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
238
239
240
241
242
243

    if self.task_config.validation_data.resize_eval_groundtruth:
      loss = self.build_losses(model_outputs=outputs, labels=labels,
                               aux_losses=model.losses)
    else:
      loss = 0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
244
245

    logs = {self.loss: loss}
246
    logs.update({self.iou_metric.name: (labels, outputs)})
Abdullah Rashwan's avatar
Abdullah Rashwan committed
247
248
249
250
251
252
253
254
255
256
257
258
259

    if metrics:
      self.process_metrics(metrics, labels, outputs)
      logs.update({m.name: m.result() for m in metrics})

    return logs

  def inference_step(self, inputs, model):
    """Performs the forward step."""
    return model(inputs, training=False)

  def aggregate_logs(self, state=None, step_outputs=None):
    if state is None:
260
261
262
263
      self.iou_metric.reset_states()
      state = self.iou_metric
    self.iou_metric.update_state(step_outputs[self.iou_metric.name][0],
                                 step_outputs[self.iou_metric.name][1])
Abdullah Rashwan's avatar
Abdullah Rashwan committed
264
265
    return state

266
  def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
267
268
269
270
271
272
273
274
275
    result = {}
    ious = self.iou_metric.result()
    # TODO(arashwan): support loading class name from a label map file.
    if self.task_config.evaluation.report_per_class_iou:
      for i, value in enumerate(ious.numpy()):
        result.update({'iou/{}'.format(i): value})
    # Computes mean IoU
    result.update({'mean_iou': tf.reduce_mean(ious).numpy()})
    return result