sentence_prediction.py 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Sentence prediction (classification) task."""
17
from typing import List, Union, Optional
18

19
from absl import logging
20
import dataclasses
21
import numpy as np
22
import orbit
23
24
from scipy import stats
from sklearn import metrics as sklearn_metrics
25
26
27
import tensorflow as tf

from official.core import base_task
28
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
29
from official.core import task_factory
Chen Chen's avatar
Chen Chen committed
30
from official.modeling import tf_utils
Hongkun Yu's avatar
Hongkun Yu committed
31
32
from official.modeling.hyperparams import base_config
from official.nlp.configs import encoders
Chen Chen's avatar
Chen Chen committed
33
from official.nlp.data import data_loader_factory
Hongkun Yu's avatar
Hongkun Yu committed
34
from official.nlp.modeling import models
Chen Chen's avatar
Chen Chen committed
35
from official.nlp.tasks import utils
36

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
37
38
39
40
METRIC_TYPES = frozenset(
    ['accuracy', 'matthews_corrcoef', 'pearson_spearman_corr'])


Hongkun Yu's avatar
Hongkun Yu committed
41
42
43
44
45
@dataclasses.dataclass
class ModelConfig(base_config.Config):
  """A classifier/regressor configuration."""
  num_classes: int = 0
  use_encoder_pooler: bool = False
Hongkun Yu's avatar
Hongkun Yu committed
46
  encoder: encoders.EncoderConfig = encoders.EncoderConfig()
Hongkun Yu's avatar
Hongkun Yu committed
47
48


49
50
51
@dataclasses.dataclass
class SentencePredictionConfig(cfg.TaskConfig):
  """The model config."""
Hongkun Yu's avatar
Hongkun Yu committed
52
  # At most one of `init_checkpoint` and `hub_module_url` can
53
  # be specified.
Hongkun Yu's avatar
Hongkun Yu committed
54
  init_checkpoint: str = ''
Hongkun Yu's avatar
Hongkun Yu committed
55
  init_cls_pooler: bool = False
56
  hub_module_url: str = ''
57
  metric_type: str = 'accuracy'
Hongkun Yu's avatar
Hongkun Yu committed
58
59
  # Defines the concrete model config at instantiation time.
  model: ModelConfig = ModelConfig()
60
61
62
63
  train_data: cfg.DataConfig = cfg.DataConfig()
  validation_data: cfg.DataConfig = cfg.DataConfig()


Abdullah Rashwan's avatar
Abdullah Rashwan committed
64
@task_factory.register_task_cls(SentencePredictionConfig)
65
66
67
class SentencePredictionTask(base_task.Task):
  """Task object for sentence_prediction."""

Hongkun Yu's avatar
Hongkun Yu committed
68
69
  def __init__(self, params: cfg.TaskConfig, logging_dir=None, name=None):
    super().__init__(params, logging_dir, name=name)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
70
71
    if params.metric_type not in METRIC_TYPES:
      raise ValueError('Invalid metric_type: {}'.format(params.metric_type))
72
    self.metric_type = params.metric_type
73
74

  def build_model(self):
Hongkun Yu's avatar
Hongkun Yu committed
75
76
77
78
    if self.task_config.hub_module_url and self.task_config.init_checkpoint:
      raise ValueError('At most one of `hub_module_url` and '
                       '`init_checkpoint` can be specified.')
    if self.task_config.hub_module_url:
Chen Chen's avatar
Chen Chen committed
79
80
      encoder_network = utils.get_encoder_from_hub(
          self.task_config.hub_module_url)
81
    else:
Hongkun Yu's avatar
Hongkun Yu committed
82
83
      encoder_network = encoders.build_encoder(self.task_config.model.encoder)
    encoder_cfg = self.task_config.model.encoder.get()
Allen Wang's avatar
Allen Wang committed
84
85
86
87
88
89
90
91
92
93
94
95
96
    if self.task_config.model.encoder.type == 'xlnet':
      return models.XLNetClassifier(
          network=encoder_network,
          num_classes=self.task_config.model.num_classes,
          initializer=tf.keras.initializers.RandomNormal(
              stddev=encoder_cfg.initializer_range))
    else:
      return models.BertClassifier(
          network=encoder_network,
          num_classes=self.task_config.model.num_classes,
          initializer=tf.keras.initializers.TruncatedNormal(
              stddev=encoder_cfg.initializer_range),
          use_encoder_pooler=self.task_config.model.use_encoder_pooler)
97

98
  def build_losses(self, labels, model_outputs, aux_losses=None) -> tf.Tensor:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
99
100
101
102
103
    if self.task_config.model.num_classes == 1:
      loss = tf.keras.losses.mean_squared_error(labels, model_outputs)
    else:
      loss = tf.keras.losses.sparse_categorical_crossentropy(
          labels, tf.cast(model_outputs, tf.float32), from_logits=True)
104
105
106

    if aux_losses:
      loss += tf.add_n(aux_losses)
Chen Chen's avatar
Chen Chen committed
107
    return tf_utils.safe_mean(loss)
108
109
110
111

  def build_inputs(self, params, input_context=None):
    """Returns tf.data.Dataset for sentence_prediction task."""
    if params.input_path == 'dummy':
Hongkun Yu's avatar
Hongkun Yu committed
112

113
114
115
116
117
118
      def dummy_data(_):
        dummy_ids = tf.zeros((1, params.seq_length), dtype=tf.int32)
        x = dict(
            input_word_ids=dummy_ids,
            input_mask=dummy_ids,
            input_type_ids=dummy_ids)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
119
120
121
122
123
124

        if self.task_config.model.num_classes == 1:
          y = tf.zeros((1,), dtype=tf.float32)
        else:
          y = tf.zeros((1, 1), dtype=tf.int32)
        return x, y
125
126
127
128
129
130
131

      dataset = tf.data.Dataset.range(1)
      dataset = dataset.repeat()
      dataset = dataset.map(
          dummy_data, num_parallel_calls=tf.data.experimental.AUTOTUNE)
      return dataset

Chen Chen's avatar
Chen Chen committed
132
    return data_loader_factory.get_data_loader(params).load(input_context)
133
134
135

  def build_metrics(self, training=None):
    del training
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
136
137
138
139
    if self.task_config.model.num_classes == 1:
      metrics = [tf.keras.metrics.MeanSquaredError()]
    else:
      metrics = [
Hongkun Yu's avatar
Hongkun Yu committed
140
141
          tf.keras.metrics.SparseCategoricalAccuracy(name='cls_accuracy')
      ]
142
143
    return metrics

144
  def process_metrics(self, metrics, labels, model_outputs):
145
    for metric in metrics:
Hongkun Yu's avatar
Hongkun Yu committed
146
      metric.update_state(labels, model_outputs)
147

148
  def process_compiled_metrics(self, compiled_metrics, labels, model_outputs):
Hongkun Yu's avatar
Hongkun Yu committed
149
    compiled_metrics.update_state(labels, model_outputs)
150

151
152
153
154
155
156
157
158
  def validation_step(self, inputs, model: tf.keras.Model, metrics=None):
    if self.metric_type == 'accuracy':
      return super(SentencePredictionTask,
                   self).validation_step(inputs, model, metrics)
    features, labels = inputs
    outputs = self.inference_step(features, model)
    loss = self.build_losses(
        labels=labels, model_outputs=outputs, aux_losses=model.losses)
Hongkun Yu's avatar
Hongkun Yu committed
159
    logs = {self.loss: loss}
160
    if self.metric_type == 'matthews_corrcoef':
Hongkun Yu's avatar
Hongkun Yu committed
161
      logs.update({
162
          'sentence_prediction':  # Ensure one prediction along batch dimension.
163
              tf.expand_dims(tf.math.argmax(outputs, axis=1), axis=1),
164
165
          'labels':
              labels,
Hongkun Yu's avatar
Hongkun Yu committed
166
      })
167
    if self.metric_type == 'pearson_spearman_corr':
Hongkun Yu's avatar
Hongkun Yu committed
168
      logs.update({
Hongkun Yu's avatar
Hongkun Yu committed
169
          'sentence_prediction': outputs,
170
          'labels': labels,
Hongkun Yu's avatar
Hongkun Yu committed
171
172
      })
    return logs
173
174

  def aggregate_logs(self, state=None, step_outputs=None):
Hongkun Yu's avatar
Hongkun Yu committed
175
176
    if self.metric_type == 'accuracy':
      return None
177
178
179
180
181
182
183
184
185
    if state is None:
      state = {'sentence_prediction': [], 'labels': []}
    state['sentence_prediction'].append(
        np.concatenate([v.numpy() for v in step_outputs['sentence_prediction']],
                       axis=0))
    state['labels'].append(
        np.concatenate([v.numpy() for v in step_outputs['labels']], axis=0))
    return state

186
  def reduce_aggregated_logs(self, aggregated_logs, global_step=None):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
187
188
189
    if self.metric_type == 'accuracy':
      return None
    elif self.metric_type == 'matthews_corrcoef':
190
      preds = np.concatenate(aggregated_logs['sentence_prediction'], axis=0)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
191
      preds = np.reshape(preds, -1)
192
      labels = np.concatenate(aggregated_logs['labels'], axis=0)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
193
      labels = np.reshape(labels, -1)
194
195
196
      return {
          self.metric_type: sklearn_metrics.matthews_corrcoef(preds, labels)
      }
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
197
    elif self.metric_type == 'pearson_spearman_corr':
198
      preds = np.concatenate(aggregated_logs['sentence_prediction'], axis=0)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
199
      preds = np.reshape(preds, -1)
200
      labels = np.concatenate(aggregated_logs['labels'], axis=0)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
201
      labels = np.reshape(labels, -1)
202
203
204
205
206
      pearson_corr = stats.pearsonr(preds, labels)[0]
      spearman_corr = stats.spearmanr(preds, labels)[0]
      corr_metric = (pearson_corr + spearman_corr) / 2
      return {self.metric_type: corr_metric}

207
208
  def initialize(self, model):
    """Load a pretrained checkpoint (if exists) and then train from iter 0."""
Hongkun Yu's avatar
Hongkun Yu committed
209
210
211
212
    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)
    if not ckpt_dir_or_file:
213
214
215
      return

    pretrain2finetune_mapping = {
Hongkun Yu's avatar
Hongkun Yu committed
216
        'encoder': model.checkpoint_items['encoder'],
217
    }
Hongkun Yu's avatar
Hongkun Yu committed
218
    if self.task_config.init_cls_pooler:
Hongkun Yu's avatar
Hongkun Yu committed
219
      # This option is valid when use_encoder_pooler is false.
Hongkun Yu's avatar
Hongkun Yu committed
220
221
222
      pretrain2finetune_mapping[
          'next_sentence.pooler_dense'] = model.checkpoint_items[
              'sentence_prediction.pooler_dense']
223
    ckpt = tf.train.Checkpoint(**pretrain2finetune_mapping)
Hongkun Yu's avatar
Hongkun Yu committed
224
    status = ckpt.read(ckpt_dir_or_file)
225
    status.expect_partial().assert_existing_objects_matched()
Hongkun Yu's avatar
Hongkun Yu committed
226
    logging.info('Finished loading pretrained checkpoint from %s',
Hongkun Yu's avatar
Hongkun Yu committed
227
                 ckpt_dir_or_file)
228
229


230
231
232
233
234
def predict(task: SentencePredictionTask,
            params: cfg.DataConfig,
            model: tf.keras.Model,
            params_aug: Optional[cfg.DataConfig] = None,
            test_time_aug_wgt: float = 0.3) -> List[Union[int, float]]:
235
236
237
238
239
240
  """Predicts on the input data.

  Args:
    task: A `SentencePredictionTask` object.
    params: A `cfg.DataConfig` object.
    model: A keras.Model.
241
242
243
244
    params_aug: A `cfg.DataConfig` object for augmented data.
    test_time_aug_wgt: Test time augmentation weight. The prediction score will
      use (1. - test_time_aug_wgt) original prediction plus test_time_aug_wgt
      augmented prediction.
245
246
247
248
249
250
251

  Returns:
    A list of predictions with length of `num_examples`. For regression task,
      each element in the list is the predicted score; for classification task,
      each element is the predicted class id.
  """

252
253
254
  def predict_step(inputs):
    """Replicated prediction calculation."""
    x, _ = inputs
Chen Chen's avatar
Chen Chen committed
255
    example_id = x.pop('example_id')
256
    outputs = task.inference_step(x, model)
257
    return dict(example_id=example_id, predictions=outputs)
258
259

  def aggregate_fn(state, outputs):
260
    """Concatenates model's outputs."""
261
    if state is None:
Chen Chen's avatar
Chen Chen committed
262
      state = []
263

Chen Chen's avatar
Chen Chen committed
264
265
266
    for per_replica_example_id, per_replica_batch_predictions in zip(
        outputs['example_id'], outputs['predictions']):
      state.extend(zip(per_replica_example_id, per_replica_batch_predictions))
267
268
269
270
    return state

  dataset = orbit.utils.make_distributed_dataset(tf.distribute.get_strategy(),
                                                 task.build_inputs, params)
271
  outputs = utils.predict(predict_step, aggregate_fn, dataset)
Chen Chen's avatar
Chen Chen committed
272
273
274
275

  # When running on TPU POD, the order of output cannot be maintained,
  # so we need to sort by example_id.
  outputs = sorted(outputs, key=lambda x: x[0])
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
  is_regression = task.task_config.model.num_classes == 1
  if params_aug is not None:
    dataset_aug = orbit.utils.make_distributed_dataset(
        tf.distribute.get_strategy(), task.build_inputs, params_aug)
    outputs_aug = utils.predict(predict_step, aggregate_fn, dataset_aug)
    outputs_aug = sorted(outputs_aug, key=lambda x: x[0])
    if is_regression:
      return [(1. - test_time_aug_wgt) * x[1] + test_time_aug_wgt * y[1]
              for x, y in zip(outputs, outputs_aug)]
    else:
      return [
          tf.argmax(
              (1. - test_time_aug_wgt) * x[1] + test_time_aug_wgt * y[1],
              axis=-1) for x, y in zip(outputs, outputs_aug)
      ]
  if is_regression:
    return [x[1] for x in outputs]
  else:
    return [tf.argmax(x[1], axis=-1) for x in outputs]