bert_models.py 19.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT models that are compatible with TF 2.0."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import tensorflow as tf
23
import tensorflow_hub as hub
24

25
26
from official.modeling import tf_utils
from official.nlp import bert_modeling as modeling
Hongkun Yu's avatar
Hongkun Yu committed
27
28
from official.nlp.modeling import networks
from official.nlp.modeling.networks import bert_classifier
29
from official.nlp.modeling.networks import bert_span_labeler
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47


def gather_indexes(sequence_tensor, positions):
  """Gathers the vectors at the specific positions.

  Args:
      sequence_tensor: Sequence output of `BertModel` layer of shape
        (`batch_size`, `seq_length`, num_hidden) where num_hidden is number of
        hidden units of `BertModel` layer.
      positions: Positions ids of tokens in sequence to mask for pretraining of
        with dimension (batch_size, max_predictions_per_seq) where
        `max_predictions_per_seq` is maximum number of tokens to mask out and
        predict per each sequence.

  Returns:
      Masked out sequence tensor of shape (batch_size * max_predictions_per_seq,
      num_hidden).
  """
48
  sequence_shape = tf_utils.get_shape_list(
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
      sequence_tensor, name='sequence_output_tensor')
  batch_size = sequence_shape[0]
  seq_length = sequence_shape[1]
  width = sequence_shape[2]

  flat_offsets = tf.keras.backend.reshape(
      tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
  flat_positions = tf.keras.backend.reshape(positions + flat_offsets, [-1])
  flat_sequence_tensor = tf.keras.backend.reshape(
      sequence_tensor, [batch_size * seq_length, width])
  output_tensor = tf.gather(flat_sequence_tensor, flat_positions)

  return output_tensor


class BertPretrainLayer(tf.keras.layers.Layer):
  """Wrapper layer for pre-training a BERT model.

  This layer wraps an existing `bert_layer` which is a Keras Layer.
  It outputs `sequence_output` from TransformerBlock sub-layer and
  `sentence_output` which are suitable for feeding into a BertPretrainLoss
  layer. This layer can be used along with an unsupervised input to
  pre-train the embeddings for `bert_layer`.
  """

  def __init__(self,
               config,
               bert_layer,
               initializer=None,
               float_type=tf.float32,
               **kwargs):
    super(BertPretrainLayer, self).__init__(**kwargs)
    self.config = copy.deepcopy(config)
    self.float_type = float_type

    self.embedding_table = bert_layer.embedding_lookup.embeddings
    self.num_next_sentence_label = 2
    if initializer:
      self.initializer = initializer
    else:
      self.initializer = tf.keras.initializers.TruncatedNormal(
          stddev=self.config.initializer_range)

  def build(self, unused_input_shapes):
93
    """Implements build() for the layer."""
94
95
96
97
    self.output_bias = self.add_weight(
        shape=[self.config.vocab_size],
        name='predictions/output_bias',
        initializer=tf.keras.initializers.Zeros())
98
99
    self.lm_dense = tf.keras.layers.Dense(
        self.config.hidden_size,
100
        activation=tf_utils.get_activation(self.config.hidden_act),
101
102
        kernel_initializer=self.initializer,
        name='predictions/transform/dense')
103
    self.lm_layer_norm = tf.keras.layers.LayerNormalization(
104
105
106
107
108
109
110
111
112
113
114
115
116
        axis=-1, epsilon=1e-12, name='predictions/transform/LayerNorm')

    # Next sentence binary classification dense layer including bias to match
    # TF1.x BERT variable shapes.
    with tf.name_scope('seq_relationship'):
      self.next_seq_weights = self.add_weight(
          shape=[self.num_next_sentence_label, self.config.hidden_size],
          name='output_weights',
          initializer=self.initializer)
      self.next_seq_bias = self.add_weight(
          shape=[self.num_next_sentence_label],
          name='output_bias',
          initializer=tf.keras.initializers.Zeros())
117
118
119
120
121
    super(BertPretrainLayer, self).build(unused_input_shapes)

  def __call__(self,
               pooled_output,
               sequence_output=None,
122
123
               masked_lm_positions=None,
               **kwargs):
124
    inputs = tf_utils.pack_inputs(
125
        [pooled_output, sequence_output, masked_lm_positions])
126
    return super(BertPretrainLayer, self).__call__(inputs, **kwargs)
127
128

  def call(self, inputs):
129
    """Implements call() for the layer."""
130
    unpacked_inputs = tf_utils.unpack_inputs(inputs)
131
132
133
134
    pooled_output = unpacked_inputs[0]
    sequence_output = unpacked_inputs[1]
    masked_lm_positions = unpacked_inputs[2]

Hongkun Yu's avatar
Hongkun Yu committed
135
    mask_lm_input_tensor = gather_indexes(sequence_output, masked_lm_positions)
136
137
    lm_output = self.lm_dense(mask_lm_input_tensor)
    lm_output = self.lm_layer_norm(lm_output)
138
139
140
141
142
143
144
    lm_output = tf.matmul(lm_output, self.embedding_table, transpose_b=True)
    lm_output = tf.nn.bias_add(lm_output, self.output_bias)
    lm_output = tf.nn.log_softmax(lm_output, axis=-1)

    logits = tf.matmul(pooled_output, self.next_seq_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, self.next_seq_bias)
    sentence_output = tf.nn.log_softmax(logits, axis=-1)
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    return (lm_output, sentence_output)


class BertPretrainLossAndMetricLayer(tf.keras.layers.Layer):
  """Returns layer that computes custom loss and metrics for pretraining."""

  def __init__(self, bert_config, **kwargs):
    super(BertPretrainLossAndMetricLayer, self).__init__(**kwargs)
    self.config = copy.deepcopy(bert_config)

  def __call__(self,
               lm_output,
               sentence_output=None,
               lm_label_ids=None,
               lm_label_weights=None,
160
161
               sentence_labels=None,
               **kwargs):
162
    inputs = tf_utils.pack_inputs([
163
164
165
        lm_output, sentence_output, lm_label_ids, lm_label_weights,
        sentence_labels
    ])
Hongkun Yu's avatar
Hongkun Yu committed
166
167
    return super(BertPretrainLossAndMetricLayer,
                 self).__call__(inputs, **kwargs)
168
169
170
171

  def _add_metrics(self, lm_output, lm_labels, lm_label_weights,
                   lm_per_example_loss, sentence_output, sentence_labels,
                   sentence_per_example_loss):
172
    """Adds metrics."""
173
174
    masked_lm_accuracy = tf.keras.metrics.sparse_categorical_accuracy(
        lm_labels, lm_output)
175
176
177
    numerator = tf.reduce_sum(masked_lm_accuracy * lm_label_weights)
    denominator = tf.reduce_sum(lm_label_weights) + 1e-5
    masked_lm_accuracy = numerator / denominator
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    self.add_metric(
        masked_lm_accuracy, name='masked_lm_accuracy', aggregation='mean')

    lm_example_loss = tf.reshape(lm_per_example_loss, [-1])
    lm_example_loss = tf.reduce_mean(lm_example_loss * lm_label_weights)
    self.add_metric(lm_example_loss, name='lm_example_loss', aggregation='mean')

    next_sentence_accuracy = tf.keras.metrics.sparse_categorical_accuracy(
        sentence_labels, sentence_output)
    self.add_metric(
        next_sentence_accuracy,
        name='next_sentence_accuracy',
        aggregation='mean')

    next_sentence_mean_loss = tf.reduce_mean(sentence_per_example_loss)
    self.add_metric(
        next_sentence_mean_loss, name='next_sentence_loss', aggregation='mean')

  def call(self, inputs):
197
    """Implements call() for the layer."""
198
    unpacked_inputs = tf_utils.unpack_inputs(inputs)
199
200
    lm_output = unpacked_inputs[0]
    sentence_output = unpacked_inputs[1]
201
    lm_label_ids = unpacked_inputs[2]
202
203
204
205
206
207
208
209
210
211
212
    lm_label_ids = tf.keras.backend.reshape(lm_label_ids, [-1])
    lm_label_ids_one_hot = tf.keras.backend.one_hot(lm_label_ids,
                                                    self.config.vocab_size)
    lm_label_weights = tf.keras.backend.cast(unpacked_inputs[3], tf.float32)
    lm_label_weights = tf.keras.backend.reshape(lm_label_weights, [-1])
    lm_per_example_loss = -tf.keras.backend.sum(
        lm_output * lm_label_ids_one_hot, axis=[-1])
    numerator = tf.keras.backend.sum(lm_label_weights * lm_per_example_loss)
    denominator = tf.keras.backend.sum(lm_label_weights) + 1e-5
    mask_label_loss = numerator / denominator

213
    sentence_labels = unpacked_inputs[4]
214
215
216
217
218
219
    sentence_labels = tf.keras.backend.reshape(sentence_labels, [-1])
    sentence_label_one_hot = tf.keras.backend.one_hot(sentence_labels, 2)
    per_example_loss_sentence = -tf.keras.backend.sum(
        sentence_label_one_hot * sentence_output, axis=-1)
    sentence_loss = tf.keras.backend.mean(per_example_loss_sentence)
    loss = mask_label_loss + sentence_loss
220
    # TODO(hongkuny): Avoids the hack and switches add_loss.
221
222
223
224
225
226
227
228
229
    final_loss = tf.fill(
        tf.keras.backend.shape(per_example_loss_sentence), loss)

    self._add_metrics(lm_output, lm_label_ids, lm_label_weights,
                      lm_per_example_loss, sentence_output, sentence_labels,
                      per_example_loss_sentence)
    return final_loss


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
230
231
232
def _get_transformer_encoder(bert_config,
                             sequence_length,
                             float_dtype=tf.float32):
233
234
235
236
237
  """Gets a 'TransformerEncoder' object.

  Args:
    bert_config: A 'modeling.BertConfig' object.
    sequence_length: Maximum sequence length of the training data.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
238
    float_dtype: tf.dtype, tf.float32 or tf.float16.
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

  Returns:
    A networks.TransformerEncoder object.
  """
  return networks.TransformerEncoder(
      vocab_size=bert_config.vocab_size,
      hidden_size=bert_config.hidden_size,
      num_layers=bert_config.num_hidden_layers,
      num_attention_heads=bert_config.num_attention_heads,
      intermediate_size=bert_config.intermediate_size,
      activation=tf_utils.get_activation('gelu'),
      dropout_rate=bert_config.hidden_dropout_prob,
      attention_dropout_rate=bert_config.attention_probs_dropout_prob,
      sequence_length=sequence_length,
      max_sequence_length=bert_config.max_position_embeddings,
      type_vocab_size=bert_config.type_vocab_size,
      initializer=tf.keras.initializers.TruncatedNormal(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
256
257
          stddev=bert_config.initializer_range),
      float_dtype=float_dtype.name)
258
259


260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
def pretrain_model(bert_config,
                   seq_length,
                   max_predictions_per_seq,
                   initializer=None):
  """Returns model to be used for pre-training.

  Args:
      bert_config: Configuration that defines the core BERT model.
      seq_length: Maximum sequence length of the training data.
      max_predictions_per_seq: Maximum number of tokens in sequence to mask out
        and use for pretraining.
      initializer: Initializer for weights in BertPretrainLayer.

  Returns:
      Pretraining model as well as core BERT submodel from which to save
      weights after pretraining.
  """

  input_word_ids = tf.keras.layers.Input(
      shape=(seq_length,), name='input_word_ids', dtype=tf.int32)
  input_mask = tf.keras.layers.Input(
      shape=(seq_length,), name='input_mask', dtype=tf.int32)
  input_type_ids = tf.keras.layers.Input(
      shape=(seq_length,), name='input_type_ids', dtype=tf.int32)
  masked_lm_positions = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,),
      name='masked_lm_positions',
      dtype=tf.int32)
  masked_lm_weights = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,),
      name='masked_lm_weights',
      dtype=tf.int32)
  next_sentence_labels = tf.keras.layers.Input(
      shape=(1,), name='next_sentence_labels', dtype=tf.int32)
  masked_lm_ids = tf.keras.layers.Input(
      shape=(max_predictions_per_seq,), name='masked_lm_ids', dtype=tf.int32)

297
  bert_submodel_name = 'bert_model'
298
299
300
301
302
303
304
305
306
307
308
309
  bert_submodel = modeling.get_bert_model(
      input_word_ids,
      input_mask,
      input_type_ids,
      name=bert_submodel_name,
      config=bert_config)
  pooled_output = bert_submodel.outputs[0]
  sequence_output = bert_submodel.outputs[1]

  pretrain_layer = BertPretrainLayer(
      bert_config,
      bert_submodel.get_layer(bert_submodel_name),
310
311
      initializer=initializer,
      name='cls')
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
  lm_output, sentence_output = pretrain_layer(pooled_output, sequence_output,
                                              masked_lm_positions)

  pretrain_loss_layer = BertPretrainLossAndMetricLayer(bert_config)
  output_loss = pretrain_loss_layer(lm_output, sentence_output, masked_lm_ids,
                                    masked_lm_weights, next_sentence_labels)

  return tf.keras.Model(
      inputs={
          'input_word_ids': input_word_ids,
          'input_mask': input_mask,
          'input_type_ids': input_type_ids,
          'masked_lm_positions': masked_lm_positions,
          'masked_lm_ids': masked_lm_ids,
          'masked_lm_weights': masked_lm_weights,
          'next_sentence_labels': next_sentence_labels,
      },
      outputs=output_loss), bert_submodel


class BertSquadLogitsLayer(tf.keras.layers.Layer):
  """Returns a layer that computes custom logits for BERT squad model."""

  def __init__(self, initializer=None, float_type=tf.float32, **kwargs):
    super(BertSquadLogitsLayer, self).__init__(**kwargs)
    self.initializer = initializer
    self.float_type = float_type

  def build(self, unused_input_shapes):
341
    """Implements build() for the layer."""
342
343
344
345
346
    self.final_dense = tf.keras.layers.Dense(
        units=2, kernel_initializer=self.initializer, name='final_dense')
    super(BertSquadLogitsLayer, self).build(unused_input_shapes)

  def call(self, inputs):
347
    """Implements call() for the layer."""
348
349
350
351
352
353
354
355
356
357
358
359
    sequence_output = inputs

    input_shape = sequence_output.shape.as_list()
    sequence_length = input_shape[1]
    num_hidden_units = input_shape[2]

    final_hidden_input = tf.keras.backend.reshape(sequence_output,
                                                  [-1, num_hidden_units])
    logits = self.final_dense(final_hidden_input)
    logits = tf.keras.backend.reshape(logits, [-1, sequence_length, 2])
    logits = tf.transpose(logits, [2, 0, 1])
    unstacked_logits = tf.unstack(logits, axis=0)
360
361
    if self.float_type == tf.float16:
      unstacked_logits = tf.cast(unstacked_logits, tf.float32)
362
363
364
    return unstacked_logits[0], unstacked_logits[1]


Hongkun Yu's avatar
Hongkun Yu committed
365
366
367
368
def squad_model(bert_config,
                max_seq_length,
                float_type,
                initializer=None,
369
370
                hub_module_url=None,
                use_keras_bert=False):
371
372
373
374
375
376
  """Returns BERT Squad model along with core BERT model to import weights.

  Args:
    bert_config: BertConfig, the config defines the core Bert model.
    max_seq_length: integer, the maximum input sequence length.
    float_type: tf.dtype, tf.float32 or tf.bfloat16.
Chen Chen's avatar
Chen Chen committed
377
378
    initializer: Initializer for the final dense layer in the span labeler.
      Defaulted to TruncatedNormal initializer.
Hongkun Yu's avatar
Hongkun Yu committed
379
    hub_module_url: TF-Hub path/url to Bert module.
380
381
    use_keras_bert: Whether to use keras BERT. Note that when the above
      'hub_module_url' is specified, 'use_keras_bert' cannot be True.
382
383

  Returns:
384
385
386
387
388
    A tuple of (1) keras model that outputs start logits and end logits and
    (2) the core BERT transformer encoder.

  Raises:
    ValueError: When 'hub_module_url' is specified and 'use_keras_bert' is True.
389
  """
390
391
392
  if hub_module_url and use_keras_bert:
    raise ValueError(
        'Cannot use hub_module_url and keras BERT at the same time.')
Chen Chen's avatar
Chen Chen committed
393
394
395
  if initializer is None:
    initializer = tf.keras.initializers.TruncatedNormal(
        stddev=bert_config.initializer_range)
396
  if use_keras_bert:
Chen Chen's avatar
Chen Chen committed
397
398
    bert_encoder = _get_transformer_encoder(bert_config, max_seq_length,
                                            float_type)
399
    return bert_span_labeler.BertSpanLabeler(
Chen Chen's avatar
Chen Chen committed
400
        network=bert_encoder, initializer=initializer), bert_encoder
401

402
  input_word_ids = tf.keras.layers.Input(
403
      shape=(max_seq_length,), dtype=tf.int32, name='input_word_ids')
404
405
406
  input_mask = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
  input_type_ids = tf.keras.layers.Input(
407
      shape=(max_seq_length,), dtype=tf.int32, name='input_type_ids')
Hongkun Yu's avatar
Hongkun Yu committed
408
  if hub_module_url:
Hongkun Yu's avatar
Hongkun Yu committed
409
    core_model = hub.KerasLayer(hub_module_url, trainable=True)
Hongkun Yu's avatar
Hongkun Yu committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    _, sequence_output = core_model(
        [input_word_ids, input_mask, input_type_ids])
    # Sets the shape manually due to a bug in TF shape inference.
    # TODO(hongkuny): remove this once shape inference is correct.
    sequence_output.set_shape((None, max_seq_length, bert_config.hidden_size))
  else:
    core_model = modeling.get_bert_model(
        input_word_ids,
        input_mask,
        input_type_ids,
        config=bert_config,
        name='bert_model',
        float_type=float_type)
    # `BertSquadModel` only uses the sequnce_output which
    # has dimensionality (batch_size, sequence_length, num_hidden).
    sequence_output = core_model.outputs[1]
426
427
428
429
430
431
432

  squad_logits_layer = BertSquadLogitsLayer(
      initializer=initializer, float_type=float_type, name='squad_logits')
  start_logits, end_logits = squad_logits_layer(sequence_output)

  squad = tf.keras.Model(
      inputs={
433
          'input_word_ids': input_word_ids,
434
          'input_mask': input_mask,
435
          'input_type_ids': input_type_ids,
436
      },
437
      outputs=[start_logits, end_logits],
438
439
440
441
442
443
444
445
      name='squad_model')
  return squad, core_model


def classifier_model(bert_config,
                     float_type,
                     num_labels,
                     max_seq_length,
446
447
                     final_layer_initializer=None,
                     hub_module_url=None):
448
449
450
451
452
453
454
455
456
457
458
459
  """BERT classifier model in functional API style.

  Construct a Keras model for predicting `num_labels` outputs from an input with
  maximum sequence length `max_seq_length`.

  Args:
    bert_config: BertConfig, the config defines the core BERT model.
    float_type: dtype, tf.float32 or tf.bfloat16.
    num_labels: integer, the number of classes.
    max_seq_length: integer, the maximum input sequence length.
    final_layer_initializer: Initializer for final dense layer. Defaulted
      TruncatedNormal initializer.
Hongkun Yu's avatar
Hongkun Yu committed
460
    hub_module_url: TF-Hub path/url to Bert module.
461
462
463
464
465
466
467
468
469
470
471

  Returns:
    Combined prediction model (words, mask, type) -> (one-hot labels)
    BERT sub-model (words, mask, type) -> (bert_outputs)
  """
  if final_layer_initializer is not None:
    initializer = final_layer_initializer
  else:
    initializer = tf.keras.initializers.TruncatedNormal(
        stddev=bert_config.initializer_range)

Hongkun Yu's avatar
Hongkun Yu committed
472
  if not hub_module_url:
473
    bert_encoder = _get_transformer_encoder(bert_config, max_seq_length)
Hongkun Yu's avatar
Hongkun Yu committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    return bert_classifier.BertClassifier(
        bert_encoder,
        num_classes=num_labels,
        dropout_rate=bert_config.hidden_dropout_prob,
        initializer=initializer), bert_encoder

  input_word_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_word_ids')
  input_mask = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
  input_type_ids = tf.keras.layers.Input(
      shape=(max_seq_length,), dtype=tf.int32, name='input_type_ids')
  bert_model = hub.KerasLayer(hub_module_url, trainable=True)
  pooled_output, _ = bert_model([input_word_ids, input_mask, input_type_ids])
488
489
  output = tf.keras.layers.Dropout(rate=bert_config.hidden_dropout_prob)(
      pooled_output)
Hongkun Yu's avatar
Hongkun Yu committed
490

491
492
493
494
495
496
497
498
499
500
501
502
503
  output = tf.keras.layers.Dense(
      num_labels,
      kernel_initializer=initializer,
      name='output',
      dtype=float_type)(
          output)
  return tf.keras.Model(
      inputs={
          'input_word_ids': input_word_ids,
          'input_mask': input_mask,
          'input_type_ids': input_type_ids
      },
      outputs=output), bert_model