base_model.py 4.48 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Base Model definition."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import abc
import functools
import re
import tensorflow.compat.v2 as tf
from official.vision.detection.modeling import checkpoint_utils
from official.vision.detection.modeling import learning_rates
Pengchong Jin's avatar
Pengchong Jin committed
27
from official.vision.detection.modeling import optimizers
28
29
30


def _make_filter_trainable_variables_fn(frozen_variable_prefix):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
31
  """Creates a function for filtering trainable varialbes."""
32
33

  def _filter_trainable_variables(variables):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
34
    """Filters trainable varialbes.
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

    Args:
      variables: a list of tf.Variable to be filtered.

    Returns:
      filtered_variables: a list of tf.Variable filtered out the frozen ones.
    """
    # frozen_variable_prefix: a regex string specifing the prefix pattern of
    # the frozen variables' names.
    filtered_variables = [
        v for v in variables
        if not re.match(frozen_variable_prefix, v.name)
    ]
    return filtered_variables

  return _filter_trainable_variables


class Model(object):
  """Base class for model function."""

  __metaclass__ = abc.ABCMeta

  def __init__(self, params):
    self._use_bfloat16 = params.architecture.use_bfloat16

Yeqing Li's avatar
Yeqing Li committed
61
62
63
64
65
    if params.architecture.use_bfloat16:
      policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
          'mixed_bfloat16')
      tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)

66
    # Optimization.
Pengchong Jin's avatar
Pengchong Jin committed
67
    self._optimizer_fn = optimizers.OptimizerFactory(params.train.optimizer)
68
69
70
71
    self._learning_rate = learning_rates.learning_rate_generator(
        params.train.learning_rate)

    self._frozen_variable_prefix = params.train.frozen_variable_prefix
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
72
    self._regularization_var_regex = params.train.regularization_variable_regex
Yeqing Li's avatar
Yeqing Li committed
73
    self._l2_weight_decay = params.train.l2_weight_decay
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

    # Checkpoint restoration.
    self._checkpoint = params.train.checkpoint.as_dict()

    # Summary.
    self._enable_summary = params.enable_summary
    self._model_dir = params.model_dir

  @abc.abstractmethod
  def build_outputs(self, inputs, mode):
    """Build the graph of the forward path."""
    pass

  @abc.abstractmethod
  def build_model(self, params, mode):
    """Build the model object."""
    pass

  @abc.abstractmethod
  def build_loss_fn(self):
    """Build the model object."""
    pass

  def post_processing(self, labels, outputs):
    """Post-processing function."""
    return labels, outputs

  def model_outputs(self, inputs, mode):
    """Build the model outputs."""
    return self.build_outputs(inputs, mode)

  def build_optimizer(self):
    """Returns train_op to optimize total loss."""
    # Sets up the optimizer.
    return self._optimizer_fn(self._learning_rate)

  def make_filter_trainable_variables_fn(self):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
111
    """Creates a function for filtering trainable varialbes."""
112
113
    return _make_filter_trainable_variables_fn(self._frozen_variable_prefix)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
114
115
116
117
118
119
120
121
122
  def weight_decay_loss(self, trainable_variables):
    reg_variables = [
        v for v in trainable_variables
        if self._regularization_var_regex is None
        or re.match(self._regularization_var_regex, v.name)
    ]

    return self._l2_weight_decay * tf.add_n(
        [tf.nn.l2_loss(v) for v in reg_variables])
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

  def make_restore_checkpoint_fn(self):
    """Returns scaffold function to restore parameters from v1 checkpoint."""
    if 'skip_checkpoint_variables' in self._checkpoint:
      skip_regex = self._checkpoint['skip_checkpoint_variables']
    else:
      skip_regex = None
    return checkpoint_utils.make_restore_checkpoint_fn(
        self._checkpoint['path'],
        prefix=self._checkpoint['prefix'],
        skip_regex=skip_regex)

  def eval_metrics(self):
    """Returns tuple of metric function and its inputs for evaluation."""
    raise NotImplementedError('Unimplemented eval_metrics')