base_model.py 5.42 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Base Model definition."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import abc
import functools
import re
import tensorflow.compat.v2 as tf
from official.vision.detection.modeling import checkpoint_utils
from official.vision.detection.modeling import learning_rates


class OptimizerFactory(object):
  """Class to generate optimizer function."""

  def __init__(self, params):
    """Creates optimized based on the specified flags."""
    if params.type == 'momentum':
Yeqing Li's avatar
Yeqing Li committed
35
36
37
      nesterov = False
      try:
        nesterov = params.nesterov
38
      except AttributeError:
Yeqing Li's avatar
Yeqing Li committed
39
        pass
40
      self._optimizer = functools.partial(
Yeqing Li's avatar
Yeqing Li committed
41
42
43
          tf.keras.optimizers.SGD,
          momentum=params.momentum,
          nesterov=nesterov)
44
45
46
47
48
49
50
51
    elif params.type == 'adam':
      self._optimizer = tf.keras.optimizers.Adam
    elif params.type == 'adadelta':
      self._optimizer = tf.keras.optimizers.Adadelta
    elif params.type == 'adagrad':
      self._optimizer = tf.keras.optimizers.Adagrad
    elif params.type == 'rmsprop':
      self._optimizer = functools.partial(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
52
          tf.keras.optimizers.RMSprop, momentum=params.momentum)
53
54
55
56
57
58
59
60
    else:
      raise ValueError('Unsupported optimizer type %s.' % self._optimizer)

  def __call__(self, learning_rate):
    return self._optimizer(learning_rate=learning_rate)


def _make_filter_trainable_variables_fn(frozen_variable_prefix):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
61
  """Creates a function for filtering trainable varialbes."""
62
63

  def _filter_trainable_variables(variables):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
64
    """Filters trainable varialbes.
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

    Args:
      variables: a list of tf.Variable to be filtered.

    Returns:
      filtered_variables: a list of tf.Variable filtered out the frozen ones.
    """
    # frozen_variable_prefix: a regex string specifing the prefix pattern of
    # the frozen variables' names.
    filtered_variables = [
        v for v in variables
        if not re.match(frozen_variable_prefix, v.name)
    ]
    return filtered_variables

  return _filter_trainable_variables


class Model(object):
  """Base class for model function."""

  __metaclass__ = abc.ABCMeta

  def __init__(self, params):
    self._use_bfloat16 = params.architecture.use_bfloat16

Yeqing Li's avatar
Yeqing Li committed
91
92
93
94
95
    if params.architecture.use_bfloat16:
      policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
          'mixed_bfloat16')
      tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)

96
97
98
99
100
101
    # Optimization.
    self._optimizer_fn = OptimizerFactory(params.train.optimizer)
    self._learning_rate = learning_rates.learning_rate_generator(
        params.train.learning_rate)

    self._frozen_variable_prefix = params.train.frozen_variable_prefix
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
102
    self._regularization_var_regex = params.train.regularization_variable_regex
Yeqing Li's avatar
Yeqing Li committed
103
    self._l2_weight_decay = params.train.l2_weight_decay
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

    # Checkpoint restoration.
    self._checkpoint = params.train.checkpoint.as_dict()

    # Summary.
    self._enable_summary = params.enable_summary
    self._model_dir = params.model_dir

  @abc.abstractmethod
  def build_outputs(self, inputs, mode):
    """Build the graph of the forward path."""
    pass

  @abc.abstractmethod
  def build_model(self, params, mode):
    """Build the model object."""
    pass

  @abc.abstractmethod
  def build_loss_fn(self):
    """Build the model object."""
    pass

  def post_processing(self, labels, outputs):
    """Post-processing function."""
    return labels, outputs

  def model_outputs(self, inputs, mode):
    """Build the model outputs."""
    return self.build_outputs(inputs, mode)

  def build_optimizer(self):
    """Returns train_op to optimize total loss."""
    # Sets up the optimizer.
    return self._optimizer_fn(self._learning_rate)

  def make_filter_trainable_variables_fn(self):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
141
    """Creates a function for filtering trainable varialbes."""
142
143
    return _make_filter_trainable_variables_fn(self._frozen_variable_prefix)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
144
145
146
147
148
149
150
151
152
  def weight_decay_loss(self, trainable_variables):
    reg_variables = [
        v for v in trainable_variables
        if self._regularization_var_regex is None
        or re.match(self._regularization_var_regex, v.name)
    ]

    return self._l2_weight_decay * tf.add_n(
        [tf.nn.l2_loss(v) for v in reg_variables])
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

  def make_restore_checkpoint_fn(self):
    """Returns scaffold function to restore parameters from v1 checkpoint."""
    if 'skip_checkpoint_variables' in self._checkpoint:
      skip_regex = self._checkpoint['skip_checkpoint_variables']
    else:
      skip_regex = None
    return checkpoint_utils.make_restore_checkpoint_fn(
        self._checkpoint['path'],
        prefix=self._checkpoint['prefix'],
        skip_regex=skip_regex)

  def eval_metrics(self):
    """Returns tuple of metric function and its inputs for evaluation."""
    raise NotImplementedError('Unimplemented eval_metrics')