sentence_prediction_test.py 10.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for official.nlp.tasks.sentence_prediction."""
17
import functools
18
import os
19
20

from absl.testing import parameterized
21
import numpy as np
22
23
24
25
26
27
import tensorflow as tf

from official.nlp.bert import configs
from official.nlp.bert import export_tfhub
from official.nlp.configs import bert
from official.nlp.configs import encoders
Chen Chen's avatar
Chen Chen committed
28
from official.nlp.data import sentence_prediction_dataloader
Hongkun Yu's avatar
Hongkun Yu committed
29
from official.nlp.tasks import masked_lm
30
31
32
from official.nlp.tasks import sentence_prediction


33
34
35
36
37
38
39
40
41
42
def _create_fake_dataset(output_path, seq_length, num_classes, num_examples):
  """Creates a fake dataset."""
  writer = tf.io.TFRecordWriter(output_path)

  def create_int_feature(values):
    return tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))

  def create_float_feature(values):
    return tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))

Chen Chen's avatar
Chen Chen committed
43
  for i in range(num_examples):
44
45
46
47
48
49
    features = {}
    input_ids = np.random.randint(100, size=(seq_length))
    features["input_ids"] = create_int_feature(input_ids)
    features["input_mask"] = create_int_feature(np.ones_like(input_ids))
    features["segment_ids"] = create_int_feature(np.ones_like(input_ids))
    features["segment_ids"] = create_int_feature(np.ones_like(input_ids))
Chen Chen's avatar
Chen Chen committed
50
    features["example_id"] = create_int_feature([i])
51
52
53
54
55
56
57
58
59
60
61
62

    if num_classes == 1:
      features["label_ids"] = create_float_feature([np.random.random()])
    else:
      features["label_ids"] = create_int_feature(
          [np.random.random_integers(0, num_classes - 1, size=())])

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString())
  writer.close()


63
class SentencePredictionTaskTest(tf.test.TestCase, parameterized.TestCase):
64

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
65
66
  def setUp(self):
    super(SentencePredictionTaskTest, self).setUp()
Chen Chen's avatar
Chen Chen committed
67
68
69
    self._train_data_config = (
        sentence_prediction_dataloader.SentencePredictionDataConfig(
            input_path="dummy", seq_length=128, global_batch_size=1))
70

Pengchong Jin's avatar
Pengchong Jin committed
71
  def get_model_config(self, num_classes):
Hongkun Yu's avatar
Hongkun Yu committed
72
    return sentence_prediction.ModelConfig(
Hongkun Yu's avatar
Hongkun Yu committed
73
74
        encoder=encoders.EncoderConfig(
            bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)),
Hongkun Yu's avatar
Hongkun Yu committed
75
        num_classes=num_classes)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76

77
78
79
80
81
82
  def _run_task(self, config):
    task = sentence_prediction.SentencePredictionTask(config)
    model = task.build_model()
    metrics = task.build_metrics()

    strategy = tf.distribute.get_strategy()
Chenkai Kuang's avatar
Chenkai Kuang committed
83
    dataset = strategy.distribute_datasets_from_function(
84
        functools.partial(task.build_inputs, config.train_data))
85
86
87
88

    iterator = iter(dataset)
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
    task.train_step(next(iterator), model, optimizer, metrics=metrics)
Chen Chen's avatar
Chen Chen committed
89
    model.save(os.path.join(self.get_temp_dir(), "saved_model"))
90
    return task.validation_step(next(iterator), model, metrics=metrics)
91

Hongkun Yu's avatar
Hongkun Yu committed
92
93
94
95
96
  @parameterized.named_parameters(
      ("init_cls_pooler", True),
      ("init_encoder", False),
  )
  def test_task(self, init_cls_pooler):
Hongkun Yu's avatar
Hongkun Yu committed
97
    # Saves a checkpoint.
Hongkun Yu's avatar
Hongkun Yu committed
98
99
100
    pretrain_cfg = bert.PretrainerConfig(
        encoder=encoders.EncoderConfig(
            bert=encoders.BertEncoderConfig(vocab_size=30522, num_layers=1)),
Hongkun Yu's avatar
Hongkun Yu committed
101
102
        cls_heads=[
            bert.ClsHeadConfig(
Hongkun Yu's avatar
Hongkun Yu committed
103
                inner_dim=768, num_classes=2, name="next_sentence")
Hongkun Yu's avatar
Hongkun Yu committed
104
        ])
Hongkun Yu's avatar
Hongkun Yu committed
105
    pretrain_model = masked_lm.MaskedLMTask(None).build_model(pretrain_cfg)
Hongkun Yu's avatar
Hongkun Yu committed
106
107
    # The model variables will be created after the forward call.
    _ = pretrain_model(pretrain_model.inputs)
Hongkun Yu's avatar
Hongkun Yu committed
108
109
    ckpt = tf.train.Checkpoint(
        model=pretrain_model, **pretrain_model.checkpoint_items)
Hongkun Yu's avatar
Hongkun Yu committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    init_path = ckpt.save(self.get_temp_dir())

    # Creates the task.
    config = sentence_prediction.SentencePredictionConfig(
        init_checkpoint=init_path,
        model=self.get_model_config(num_classes=2),
        train_data=self._train_data_config,
        init_cls_pooler=init_cls_pooler)
    task = sentence_prediction.SentencePredictionTask(config)
    model = task.build_model()
    metrics = task.build_metrics()
    dataset = task.build_inputs(config.train_data)

    iterator = iter(dataset)
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
Hongkun Yu's avatar
Hongkun Yu committed
125
    task.initialize(model)
Hongkun Yu's avatar
Hongkun Yu committed
126
127
    task.train_step(next(iterator), model, optimizer, metrics=metrics)
    task.validation_step(next(iterator), model, metrics=metrics)
Hongkun Yu's avatar
Hongkun Yu committed
128

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
  @parameterized.named_parameters(
      {
          "testcase_name": "regression",
          "num_classes": 1,
      },
      {
          "testcase_name": "classification",
          "num_classes": 2,
      },
  )
  def test_metrics_and_losses(self, num_classes):
    config = sentence_prediction.SentencePredictionConfig(
        init_checkpoint=self.get_temp_dir(),
        model=self.get_model_config(num_classes),
        train_data=self._train_data_config)
    task = sentence_prediction.SentencePredictionTask(config)
    model = task.build_model()
    metrics = task.build_metrics()
    if num_classes == 1:
      self.assertIsInstance(metrics[0], tf.keras.metrics.MeanSquaredError)
    else:
Hongkun Yu's avatar
Hongkun Yu committed
150
151
      self.assertIsInstance(metrics[0],
                            tf.keras.metrics.SparseCategoricalAccuracy)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
152
153
154
155
156
157
158
159
160

    dataset = task.build_inputs(config.train_data)
    iterator = iter(dataset)
    optimizer = tf.keras.optimizers.SGD(lr=0.1)
    task.train_step(next(iterator), model, optimizer, metrics=metrics)

    logs = task.validation_step(next(iterator), model, metrics=metrics)
    loss = logs["loss"].numpy()
    if num_classes == 1:
161
      self.assertGreater(loss, 1.0)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
162
    else:
163
      self.assertLess(loss, 1.0)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
164

165
166
167
  @parameterized.parameters(("matthews_corrcoef", 2),
                            ("pearson_spearman_corr", 1))
  def test_np_metrics(self, metric_type, num_classes):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
168
    config = sentence_prediction.SentencePredictionConfig(
169
170
        metric_type=metric_type,
        init_checkpoint=self.get_temp_dir(),
Pengchong Jin's avatar
Pengchong Jin committed
171
        model=self.get_model_config(num_classes),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
172
173
174
        train_data=self._train_data_config)
    task = sentence_prediction.SentencePredictionTask(config)
    model = task.build_model()
175
176
177
178
179
180
181
182
183
184
185
186
187
    dataset = task.build_inputs(config.train_data)

    iterator = iter(dataset)
    strategy = tf.distribute.get_strategy()
    distributed_outputs = strategy.run(
        functools.partial(task.validation_step, model=model),
        args=(next(iterator),))
    outputs = tf.nest.map_structure(strategy.experimental_local_results,
                                    distributed_outputs)
    aggregated = task.aggregate_logs(step_outputs=outputs)
    aggregated = task.aggregate_logs(state=aggregated, step_outputs=outputs)
    self.assertIn(metric_type, task.reduce_aggregated_logs(aggregated))

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
  def test_np_metrics_cola_partial_batch(self):
    train_data_path = os.path.join(self.get_temp_dir(), "train.tf_record")
    num_examples = 5
    global_batch_size = 8
    seq_length = 16
    _create_fake_dataset(
        train_data_path,
        seq_length=seq_length,
        num_classes=2,
        num_examples=num_examples)

    train_data_config = (
        sentence_prediction_dataloader.SentencePredictionDataConfig(
            input_path=train_data_path,
            seq_length=seq_length,
            is_training=True,
            label_type="int",
            global_batch_size=global_batch_size,
            drop_remainder=False,
            include_example_id=True))

    config = sentence_prediction.SentencePredictionConfig(
        metric_type="matthews_corrcoef",
        model=self.get_model_config(2),
        train_data=train_data_config)
    outputs = self._run_task(config)
    self.assertEqual(outputs["sentence_prediction"].shape.as_list(), [8, 1])

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
  def _export_bert_tfhub(self):
    bert_config = configs.BertConfig(
        vocab_size=30522,
        hidden_size=16,
        intermediate_size=32,
        max_position_embeddings=128,
        num_attention_heads=2,
        num_hidden_layers=1)
    _, encoder = export_tfhub.create_bert_model(bert_config)
    model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint")
    checkpoint = tf.train.Checkpoint(model=encoder)
    checkpoint.save(os.path.join(model_checkpoint_dir, "test"))
    model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir)

    vocab_file = os.path.join(self.get_temp_dir(), "uncased_vocab.txt")
    with tf.io.gfile.GFile(vocab_file, "w") as f:
      f.write("dummy content")

    hub_destination = os.path.join(self.get_temp_dir(), "hub")
    export_tfhub.export_bert_tfhub(bert_config, model_checkpoint_path,
                                   hub_destination, vocab_file)
    return hub_destination

  def test_task_with_hub(self):
    hub_module_url = self._export_bert_tfhub()
    config = sentence_prediction.SentencePredictionConfig(
        hub_module_url=hub_module_url,
Pengchong Jin's avatar
Pengchong Jin committed
243
        model=self.get_model_config(2),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
244
        train_data=self._train_data_config)
245
246
    self._run_task(config)

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
  @parameterized.named_parameters(("classification", 5), ("regression", 1))
  def test_prediction(self, num_classes):
    task_config = sentence_prediction.SentencePredictionConfig(
        model=self.get_model_config(num_classes=num_classes),
        train_data=self._train_data_config)
    task = sentence_prediction.SentencePredictionTask(task_config)
    model = task.build_model()

    test_data_path = os.path.join(self.get_temp_dir(), "test.tf_record")
    seq_length = 16
    num_examples = 100
    _create_fake_dataset(
        test_data_path,
        seq_length=seq_length,
        num_classes=num_classes,
        num_examples=num_examples)

    test_data_config = (
        sentence_prediction_dataloader.SentencePredictionDataConfig(
            input_path=test_data_path,
            seq_length=seq_length,
            is_training=False,
            label_type="int" if num_classes > 1 else "float",
            global_batch_size=16,
Chen Chen's avatar
Chen Chen committed
271
272
            drop_remainder=False,
            include_example_id=True))
273
274
275

    predictions = sentence_prediction.predict(task, test_data_config, model)
    self.assertLen(predictions, num_examples)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
276
277
278
    for prediction in predictions:
      self.assertEqual(prediction.dtype,
                       tf.int64 if num_classes > 1 else tf.float32)
279

280
281
282

if __name__ == "__main__":
  tf.test.main()