nets_factory.py 5.03 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains a factory for building various models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools

import tensorflow as tf

from nets import alexnet
from nets import cifarnet
from nets import inception
from nets import lenet
andrewghoward's avatar
andrewghoward committed
28
from nets import mobilenet_v1
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from nets import overfeat
from nets import resnet_v1
from nets import resnet_v2
from nets import vgg

slim = tf.contrib.slim

networks_map = {'alexnet_v2': alexnet.alexnet_v2,
                'cifarnet': cifarnet.cifarnet,
                'overfeat': overfeat.overfeat,
                'vgg_a': vgg.vgg_a,
                'vgg_16': vgg.vgg_16,
                'vgg_19': vgg.vgg_19,
                'inception_v1': inception.inception_v1,
                'inception_v2': inception.inception_v2,
                'inception_v3': inception.inception_v3,
Alex Kurakin's avatar
Alex Kurakin committed
45
                'inception_v4': inception.inception_v4,
46
47
48
49
50
51
52
53
54
55
                'inception_resnet_v2': inception.inception_resnet_v2,
                'lenet': lenet.lenet,
                'resnet_v1_50': resnet_v1.resnet_v1_50,
                'resnet_v1_101': resnet_v1.resnet_v1_101,
                'resnet_v1_152': resnet_v1.resnet_v1_152,
                'resnet_v1_200': resnet_v1.resnet_v1_200,
                'resnet_v2_50': resnet_v2.resnet_v2_50,
                'resnet_v2_101': resnet_v2.resnet_v2_101,
                'resnet_v2_152': resnet_v2.resnet_v2_152,
                'resnet_v2_200': resnet_v2.resnet_v2_200,
andrewghoward's avatar
andrewghoward committed
56
                'mobilenet_v1': mobilenet_v1.mobilenet_v1,
Pete Warden's avatar
Pete Warden committed
57
58
59
                'mobilenet_v1_075': mobilenet_v1.mobilenet_v1_075,
                'mobilenet_v1_050': mobilenet_v1.mobilenet_v1_050,
                'mobilenet_v1_025': mobilenet_v1.mobilenet_v1_025,
60
61
62
63
64
65
66
67
68
69
70
               }

arg_scopes_map = {'alexnet_v2': alexnet.alexnet_v2_arg_scope,
                  'cifarnet': cifarnet.cifarnet_arg_scope,
                  'overfeat': overfeat.overfeat_arg_scope,
                  'vgg_a': vgg.vgg_arg_scope,
                  'vgg_16': vgg.vgg_arg_scope,
                  'vgg_19': vgg.vgg_arg_scope,
                  'inception_v1': inception.inception_v3_arg_scope,
                  'inception_v2': inception.inception_v3_arg_scope,
                  'inception_v3': inception.inception_v3_arg_scope,
Alex Kurakin's avatar
Alex Kurakin committed
71
                  'inception_v4': inception.inception_v4_arg_scope,
72
73
74
75
76
77
78
79
80
81
82
                  'inception_resnet_v2':
                  inception.inception_resnet_v2_arg_scope,
                  'lenet': lenet.lenet_arg_scope,
                  'resnet_v1_50': resnet_v1.resnet_arg_scope,
                  'resnet_v1_101': resnet_v1.resnet_arg_scope,
                  'resnet_v1_152': resnet_v1.resnet_arg_scope,
                  'resnet_v1_200': resnet_v1.resnet_arg_scope,
                  'resnet_v2_50': resnet_v2.resnet_arg_scope,
                  'resnet_v2_101': resnet_v2.resnet_arg_scope,
                  'resnet_v2_152': resnet_v2.resnet_arg_scope,
                  'resnet_v2_200': resnet_v2.resnet_arg_scope,
andrewghoward's avatar
andrewghoward committed
83
                  'mobilenet_v1': mobilenet_v1.mobilenet_v1_arg_scope,
Pete Warden's avatar
Pete Warden committed
84
85
86
                  'mobilenet_v1_075': mobilenet_v1.mobilenet_v1_arg_scope,
                  'mobilenet_v1_050': mobilenet_v1.mobilenet_v1_arg_scope,
                  'mobilenet_v1_025': mobilenet_v1.mobilenet_v1_arg_scope,
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
                 }


def get_network_fn(name, num_classes, weight_decay=0.0, is_training=False):
  """Returns a network_fn such as `logits, end_points = network_fn(images)`.

  Args:
    name: The name of the network.
    num_classes: The number of classes to use for classification.
    weight_decay: The l2 coefficient for the model weights.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    network_fn: A function that applies the model to a batch of images. It has
      the following signature:
        logits, end_points = network_fn(images)
  Raises:
    ValueError: If network `name` is not recognized.
  """
  if name not in networks_map:
    raise ValueError('Name of network unknown %s' % name)
  func = networks_map[name]
  @functools.wraps(func)
  def network_fn(images):
112
    arg_scope = arg_scopes_map[name](weight_decay=weight_decay)
113
114
115
116
117
118
    with slim.arg_scope(arg_scope):
      return func(images, num_classes, is_training=is_training)
  if hasattr(func, 'default_image_size'):
    network_fn.default_image_size = func.default_image_size

  return network_fn