ncf_common.py 12.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Shining Sun's avatar
Shining Sun committed
15
"""Common functionalities used by both Keras and Estimator implementations.
16
"""
17

18
19
20
21
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

22
import json
23
24
import os

25
# pylint: disable=g-bad-import-order
26
import numpy as np
27
from absl import flags
28
from absl import logging
29
import tensorflow as tf
30
# pylint: enable=g-bad-import-order
31

32
from official.datasets import movielens
33
from official.recommendation import constants as rconst
34
from official.recommendation import data_pipeline
35
from official.recommendation import data_preprocessing
36
from official.utils.flags import core as flags_core
37
from official.utils.misc import distribution_utils
38
39


Reed's avatar
Reed committed
40
41
42
FLAGS = flags.FLAGS


Shining Sun's avatar
Shining Sun committed
43
44
45
46
def get_inputs(params):
  """Returns some parameters used by the model."""
  if FLAGS.download_if_missing and not FLAGS.use_synthetic_data:
    movielens.download(FLAGS.dataset, FLAGS.data_dir)
47

Shining Sun's avatar
Shining Sun committed
48
49
  if FLAGS.seed is not None:
    np.random.seed(FLAGS.seed)
50

Shining Sun's avatar
Shining Sun committed
51
52
53
54
55
56
  if FLAGS.use_synthetic_data:
    producer = data_pipeline.DummyConstructor()
    num_users, num_items = data_preprocessing.DATASET_TO_NUM_USERS_AND_ITEMS[
        FLAGS.dataset]
    num_train_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
    num_eval_steps = rconst.SYNTHETIC_BATCHES_PER_EPOCH
57
  else:
Shining Sun's avatar
Shining Sun committed
58
59
60
61
    num_users, num_items, producer = data_preprocessing.instantiate_pipeline(
        dataset=FLAGS.dataset, data_dir=FLAGS.data_dir, params=params,
        constructor_type=FLAGS.constructor_type,
        deterministic=FLAGS.seed is not None)
62

Shining Sun's avatar
Shining Sun committed
63
64
65
66
67
68
    num_train_steps = (producer.train_batches_per_epoch //
                       params["batches_per_step"])
    num_eval_steps = (producer.eval_batches_per_epoch //
                      params["batches_per_step"])
    assert not producer.train_batches_per_epoch % params["batches_per_step"]
    assert not producer.eval_batches_per_epoch % params["batches_per_step"]
69

Shining Sun's avatar
Shining Sun committed
70
  return num_users, num_items, num_train_steps, num_eval_steps, producer
71
72
73


def parse_flags(flags_obj):
Taylor Robie's avatar
Taylor Robie committed
74
  """Convenience function to turn flags into params."""
75
76
77
  num_gpus = flags_core.get_num_gpus(flags_obj)
  num_devices = FLAGS.num_tpu_shards if FLAGS.tpu else num_gpus or 1

Taylor Robie's avatar
Taylor Robie committed
78
  batch_size = (flags_obj.batch_size + num_devices - 1) // num_devices
79
80

  eval_divisor = (rconst.NUM_EVAL_NEGATIVES + 1) * num_devices
Taylor Robie's avatar
Taylor Robie committed
81
82
83
  eval_batch_size = flags_obj.eval_batch_size or flags_obj.batch_size
  eval_batch_size = ((eval_batch_size + eval_divisor - 1) //
                     eval_divisor * eval_divisor // num_devices)
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

  return {
      "train_epochs": flags_obj.train_epochs,
      "batches_per_step": num_devices,
      "use_seed": flags_obj.seed is not None,
      "batch_size": batch_size,
      "eval_batch_size": eval_batch_size,
      "learning_rate": flags_obj.learning_rate,
      "mf_dim": flags_obj.num_factors,
      "model_layers": [int(layer) for layer in flags_obj.layers],
      "mf_regularization": flags_obj.mf_regularization,
      "mlp_reg_layers": [float(reg) for reg in flags_obj.mlp_regularization],
      "num_neg": flags_obj.num_neg,
      "num_gpus": num_gpus,
      "use_tpu": flags_obj.tpu is not None,
      "tpu": flags_obj.tpu,
      "tpu_zone": flags_obj.tpu_zone,
      "tpu_gcp_project": flags_obj.tpu_gcp_project,
      "beta1": flags_obj.beta1,
      "beta2": flags_obj.beta2,
      "epsilon": flags_obj.epsilon,
      "match_mlperf": flags_obj.ml_perf,
      "use_xla_for_gpu": flags_obj.use_xla_for_gpu,
107
108
      "clone_model_in_keras_dist_strat":
          flags_obj.clone_model_in_keras_dist_strat,
109
      "epochs_between_evals": FLAGS.epochs_between_evals,
Shining Sun's avatar
Shining Sun committed
110
      "turn_off_distribution_strategy": FLAGS.turn_off_distribution_strategy,
111
  }
112
113


Shining Sun's avatar
Shining Sun committed
114
115
116
117
def get_distribution_strategy(params):
  """Returns the distribution strategy to use."""
  if params["turn_off_distribution_strategy"]:
    return None
118

Shining Sun's avatar
Shining Sun committed
119
120
121
122
123
  if params["use_tpu"]:
    # Some of the networking libraries are quite chatty.
    for name in ["googleapiclient.discovery", "googleapiclient.discovery_cache",
                 "oauth2client.transport"]:
      logging.getLogger(name).setLevel(logging.ERROR)
124

125
    tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
Shining Sun's avatar
Shining Sun committed
126
127
128
129
130
        tpu=params["tpu"],
        zone=params["tpu_zone"],
        project=params["tpu_gcp_project"],
        coordinator_name="coordinator"
    )
131

132
    logging.info("Issuing reset command to TPU to ensure a clean state.")
Shining Sun's avatar
Shining Sun committed
133
    tf.Session.reset(tpu_cluster_resolver.get_master())
134

Shining Sun's avatar
Shining Sun committed
135
136
137
138
139
140
141
142
143
144
    # Estimator looks at the master it connects to for MonitoredTrainingSession
    # by reading the `TF_CONFIG` environment variable, and the coordinator
    # is used by StreamingFilesDataset.
    tf_config_env = {
        "session_master": tpu_cluster_resolver.get_master(),
        "eval_session_master": tpu_cluster_resolver.get_master(),
        "coordinator": tpu_cluster_resolver.cluster_spec()
                       .as_dict()["coordinator"]
    }
    os.environ['TF_CONFIG'] = json.dumps(tf_config_env)
145

146
    distribution = tf.distribute.experimental.TPUStrategy(
Shining Sun's avatar
Shining Sun committed
147
        tpu_cluster_resolver, steps_per_run=100)
148

Shining Sun's avatar
Shining Sun committed
149
150
151
  else:
    distribution = distribution_utils.get_distribution_strategy(
        num_gpus=params["num_gpus"])
152

Shining Sun's avatar
Shining Sun committed
153
  return distribution
154

155
156
157
158
159
160
161
162
163

def define_ncf_flags():
  """Add flags for running ncf_main."""
  # Add common flags
  flags_core.define_base(export_dir=False)
  flags_core.define_performance(
      num_parallel_calls=False,
      inter_op=False,
      intra_op=False,
164
      synthetic_data=True,
165
      max_train_steps=False,
166
167
      dtype=False,
      all_reduce_alg=False
168
  )
169
  flags_core.define_device(tpu=True)
170
171
172
173
174
175
176
177
178
  flags_core.define_benchmark()

  flags.adopt_module_key_flags(flags_core)

  flags_core.set_defaults(
      model_dir="/tmp/ncf/",
      data_dir="/tmp/movielens-data/",
      train_epochs=2,
      batch_size=256,
179
180
181
      hooks="ProfilerHook",
      tpu=None
  )
182
183
184
185
186
187
188
189

  # Add ncf-specific flags
  flags.DEFINE_enum(
      name="dataset", default="ml-1m",
      enum_values=["ml-1m", "ml-20m"], case_sensitive=False,
      help=flags_core.help_wrap(
          "Dataset to be trained and evaluated."))

190
191
192
193
  flags.DEFINE_boolean(
      name="download_if_missing", default=True, help=flags_core.help_wrap(
          "Download data to data_dir if it is not already present."))

194
  flags.DEFINE_integer(
195
196
197
198
199
200
      name="eval_batch_size", default=None, help=flags_core.help_wrap(
          "The batch size used for evaluation. This should generally be larger"
          "than the training batch size as the lack of back propagation during"
          "evaluation can allow for larger batch sizes to fit in memory. If not"
          "specified, the training batch size (--batch_size) will be used."))

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
  flags.DEFINE_integer(
      name="num_factors", default=8,
      help=flags_core.help_wrap("The Embedding size of MF model."))

  # Set the default as a list of strings to be consistent with input arguments
  flags.DEFINE_list(
      name="layers", default=["64", "32", "16", "8"],
      help=flags_core.help_wrap(
          "The sizes of hidden layers for MLP. Example "
          "to specify different sizes of MLP layers: --layers=32,16,8,4"))

  flags.DEFINE_float(
      name="mf_regularization", default=0.,
      help=flags_core.help_wrap(
          "The regularization factor for MF embeddings. The factor is used by "
          "regularizer which allows to apply penalties on layer parameters or "
          "layer activity during optimization."))

  flags.DEFINE_list(
      name="mlp_regularization", default=["0.", "0.", "0.", "0."],
      help=flags_core.help_wrap(
          "The regularization factor for each MLP layer. See mf_regularization "
          "help for more info about regularization factor."))

  flags.DEFINE_integer(
      name="num_neg", default=4,
      help=flags_core.help_wrap(
          "The Number of negative instances to pair with a positive instance."))

  flags.DEFINE_float(
      name="learning_rate", default=0.001,
      help=flags_core.help_wrap("The learning rate."))

234
235
236
237
238
239
240
241
242
243
244
245
246
  flags.DEFINE_float(
      name="beta1", default=0.9,
      help=flags_core.help_wrap("beta1 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="beta2", default=0.999,
      help=flags_core.help_wrap("beta2 hyperparameter for the Adam optimizer."))

  flags.DEFINE_float(
      name="epsilon", default=1e-8,
      help=flags_core.help_wrap("epsilon hyperparameter for the Adam "
                                "optimizer."))

247
248
249
250
251
252
253
254
  flags.DEFINE_float(
      name="hr_threshold", default=None,
      help=flags_core.help_wrap(
          "If passed, training will stop when the evaluation metric HR is "
          "greater than or equal to hr_threshold. For dataset ml-1m, the "
          "desired hr_threshold is 0.68 which is the result from the paper; "
          "For dataset ml-20m, the threshold can be set as 0.95 which is "
          "achieved by MLPerf implementation."))
255

256
257
258
259
260
261
262
263
  flags.DEFINE_enum(
      name="constructor_type", default="bisection",
      enum_values=["bisection", "materialized"], case_sensitive=False,
      help=flags_core.help_wrap(
          "Strategy to use for generating false negatives. materialized has a"
          "precompute that scales badly, but a faster per-epoch construction"
          "time and can be faster on very large systems."))

264
  flags.DEFINE_bool(
265
      name="ml_perf", default=False,
266
267
268
269
270
271
272
273
274
275
276
277
278
      help=flags_core.help_wrap(
          "If set, changes the behavior of the model slightly to match the "
          "MLPerf reference implementations here: \n"
          "https://github.com/mlperf/reference/tree/master/recommendation/"
          "pytorch\n"
          "The two changes are:\n"
          "1. When computing the HR and NDCG during evaluation, remove "
          "duplicate user-item pairs before the computation. This results in "
          "better HRs and NDCGs.\n"
          "2. Use a different soring algorithm when sorting the input data, "
          "which performs better due to the fact the sorting algorithms are "
          "not stable."))

Reed's avatar
Reed committed
279
280
281
282
283
284
285
286
287
288
289
290
  flags.DEFINE_bool(
      name="output_ml_perf_compliance_logging", default=False,
      help=flags_core.help_wrap(
          "If set, output the MLPerf compliance logging. This is only useful "
          "if one is running the model for MLPerf. See "
          "https://github.com/mlperf/policies/blob/master/training_rules.adoc"
          "#submission-compliance-logs for details. This uses sudo and so may "
          "ask for your password, as root access is needed to clear the system "
          "caches, which is required for MLPerf compliance."
      )
  )

291
292
293
294
  flags.DEFINE_integer(
      name="seed", default=None, help=flags_core.help_wrap(
          "This value will be used to seed both NumPy and TensorFlow."))

Shining Sun's avatar
Shining Sun committed
295
296
297
298
299
300
  flags.DEFINE_boolean(
      name="turn_off_distribution_strategy",
      default=False,
      help=flags_core.help_wrap(
          "If set, do not use any distribution strategy."))

301
302
303
  @flags.validator("eval_batch_size", "eval_batch_size must be at least {}"
                   .format(rconst.NUM_EVAL_NEGATIVES + 1))
  def eval_size_check(eval_batch_size):
Taylor Robie's avatar
Taylor Robie committed
304
305
    return (eval_batch_size is None or
            int(eval_batch_size) > rconst.NUM_EVAL_NEGATIVES)
306

Reed's avatar
Reed committed
307
308
309
310
311
  flags.DEFINE_bool(
      name="use_xla_for_gpu", default=False, help=flags_core.help_wrap(
          "If True, use XLA for the model function. Only works when using a "
          "GPU. On TPUs, XLA is always used"))

312
313
314
315
  xla_message = "--use_xla_for_gpu is incompatible with --tpu"
  @flags.multi_flags_validator(["use_xla_for_gpu", "tpu"], message=xla_message)
  def xla_validator(flag_dict):
    return not flag_dict["use_xla_for_gpu"] or not flag_dict["tpu"]
Reed's avatar
Reed committed
316

317
318
319
320
321
322
323
  flags.DEFINE_bool(
      name="clone_model_in_keras_dist_strat",
      default=True,
      help=flags_core.help_wrap(
          'If False, then the experimental code path is used that doesn\'t '
          "clone models for distribution."))

324
325
326
327
328
329
  flags.DEFINE_bool(
      name="early_stopping",
      default=False,
      help=flags_core.help_wrap(
          'If True, we stop the training when it reaches hr_threshold'))

330

Shining Sun's avatar
Shining Sun committed
331
332
333
334
335
336
337
def convert_to_softmax_logits(logits):
  '''Convert the logits returned by the base model to softmax logits.

  Softmax with the first column of zeros is equivalent to sigmoid.
  '''
  softmax_logits = tf.concat([logits * 0, logits], axis=1)
  return softmax_logits