semantic_segmentation.py 18 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
"""Semantic segmentation configuration definition."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
import os
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
19
from typing import List, Optional, Union

Abdullah Rashwan's avatar
Abdullah Rashwan committed
20
import dataclasses
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
22
import numpy as np

Abdullah Rashwan's avatar
Abdullah Rashwan committed
23
24
25
26
27
28
29
30
31
32
33
34
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.modeling.hyperparams import config_definitions as cfg
from official.vision.beta.configs import backbones
from official.vision.beta.configs import common
from official.vision.beta.configs import decoders


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
35
  output_size: List[int] = dataclasses.field(default_factory=list)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
36
37
  # If train_on_crops is set to True, a patch of size output_size is cropped
  # from the input image.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
38
  train_on_crops: bool = False
Abdullah Rashwan's avatar
Abdullah Rashwan committed
39
40
41
42
43
44
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = True
  dtype: str = 'float32'
  shuffle_buffer_size: int = 1000
  cycle_length: int = 10
Abdullah Rashwan's avatar
Abdullah Rashwan committed
45
46
47
  # If resize_eval_groundtruth is set to False, original image sizes are used
  # for eval. In that case, groundtruth_padded_size has to be specified too to
  # allow for batching the variable input sizes of images.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
48
49
50
51
  resize_eval_groundtruth: bool = True
  groundtruth_padded_size: List[int] = dataclasses.field(default_factory=list)
  aug_scale_min: float = 1.0
  aug_scale_max: float = 1.0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
52
  aug_rand_hflip: bool = True
Abdullah Rashwan's avatar
Abdullah Rashwan committed
53
  drop_remainder: bool = True
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
54
  file_type: str = 'tfrecord'  # tfrecord, or sstable
Abdullah Rashwan's avatar
Abdullah Rashwan committed
55
56
57
58
59
60
61
62


@dataclasses.dataclass
class SegmentationHead(hyperparams.Config):
  level: int = 3
  num_convs: int = 2
  num_filters: int = 256
  upsample_factor: int = 1
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
63
  feature_fusion: Optional[str] = None  # None, deeplabv3plus, or pyramid_fusion
Abdullah Rashwan's avatar
Abdullah Rashwan committed
64
65
66
  # deeplabv3plus feature fusion params
  low_level: int = 2
  low_level_num_filters: int = 48
Abdullah Rashwan's avatar
Abdullah Rashwan committed
67
68
69


@dataclasses.dataclass
Abdullah Rashwan's avatar
Abdullah Rashwan committed
70
71
class SemanticSegmentationModel(hyperparams.Config):
  """Semantic segmentation model config."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
72
73
74
75
76
77
78
79
80
81
82
83
84
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)
  min_level: int = 3
  max_level: int = 6
  head: SegmentationHead = SegmentationHead()
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet())
  decoder: decoders.Decoder = decoders.Decoder(type='identity')
  norm_activation: common.NormActivation = common.NormActivation()


@dataclasses.dataclass
class Losses(hyperparams.Config):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
85
  label_smoothing: float = 0.0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
86
87
88
89
  ignore_label: int = 255
  class_weights: List[float] = dataclasses.field(default_factory=list)
  l2_weight_decay: float = 0.0
  use_groundtruth_dimension: bool = True
Abdullah Rashwan's avatar
Abdullah Rashwan committed
90
  top_k_percent_pixels: float = 1.0
Abdullah Rashwan's avatar
Abdullah Rashwan committed
91
92
93


@dataclasses.dataclass
Abdullah Rashwan's avatar
Abdullah Rashwan committed
94
class SemanticSegmentationTask(cfg.TaskConfig):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
95
  """The model config."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
96
  model: SemanticSegmentationModel = SemanticSegmentationModel()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
97
98
99
  train_data: DataConfig = DataConfig(is_training=True)
  validation_data: DataConfig = DataConfig(is_training=False)
  losses: Losses = Losses()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
100
101
102
103
  train_input_partition_dims: List[int] = dataclasses.field(
      default_factory=list)
  eval_input_partition_dims: List[int] = dataclasses.field(
      default_factory=list)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
104
105
106
107
108
109
110
111
112
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: Union[
      str, List[str]] = 'all'  # all, backbone, and/or decoder


@exp_factory.register_config_factory('semantic_segmentation')
def semantic_segmentation() -> cfg.ExperimentConfig:
  """Semantic segmentation general."""
  return cfg.ExperimentConfig(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
113
      task=SemanticSegmentationModel(),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
      trainer=cfg.TrainerConfig(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

# PASCAL VOC 2012 Dataset
PASCAL_TRAIN_EXAMPLES = 10582
PASCAL_VAL_EXAMPLES = 1449
PASCAL_INPUT_PATH_BASE = 'pascal_voc_seg'


@exp_factory.register_config_factory('seg_deeplabv3_pascal')
def seg_deeplabv3_pascal() -> cfg.ExperimentConfig:
  """Image segmentation on imagenet with resnet deeplabv3."""
  train_batch_size = 16
  eval_batch_size = 8
  steps_per_epoch = PASCAL_TRAIN_EXAMPLES // train_batch_size
Abdullah Rashwan's avatar
Abdullah Rashwan committed
132
  output_stride = 16
Abdullah Rashwan's avatar
Abdullah Rashwan committed
133
  aspp_dilation_rates = [12, 24, 36]  # [6, 12, 18] if output_stride = 16
Abdullah Rashwan's avatar
Abdullah Rashwan committed
134
135
  multigrid = [1, 2, 4]
  stem_type = 'v1'
Abdullah Rashwan's avatar
Abdullah Rashwan committed
136
  level = int(np.math.log2(output_stride))
Abdullah Rashwan's avatar
Abdullah Rashwan committed
137
  config = cfg.ExperimentConfig(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
138
139
      task=SemanticSegmentationTask(
          model=SemanticSegmentationModel(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
140
              num_classes=21,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
141
              input_size=[None, None, 3],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
142
143
              backbone=backbones.Backbone(
                  type='dilated_resnet', dilated_resnet=backbones.DilatedResNet(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
144
145
                      model_id=101, output_stride=output_stride,
                      multigrid=multigrid, stem_type=stem_type)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
146
147
              decoder=decoders.Decoder(
                  type='aspp', aspp=decoders.ASPP(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
148
149
150
151
152
153
154
155
156
157
                      level=level, dilation_rates=aspp_dilation_rates)),
              head=SegmentationHead(level=level, num_convs=0),
              norm_activation=common.NormActivation(
                  activation='swish',
                  norm_momentum=0.9997,
                  norm_epsilon=1e-3,
                  use_sync_bn=True)),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'train_aug*'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
158
159
              # TODO(arashwan): test changing size to 513 to match deeplab.
              output_size=[512, 512],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
160
161
162
163
164
165
              is_training=True,
              global_batch_size=train_batch_size,
              aug_scale_min=0.5,
              aug_scale_max=2.0),
          validation_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'val*'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
166
              output_size=[512, 512],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
167
168
169
170
171
              is_training=False,
              global_batch_size=eval_batch_size,
              resize_eval_groundtruth=False,
              groundtruth_padded_size=[512, 512],
              drop_remainder=False),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
172
173
          # resnet101
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/deeplab/deeplab_resnet101_imagenet/ckpt-62400',
Abdullah Rashwan's avatar
Abdullah Rashwan committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
          init_checkpoint_modules='backbone'),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=45 * steps_per_epoch,
          validation_steps=PASCAL_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'polynomial',
                  'polynomial': {
                      'initial_learning_rate': 0.007,
                      'decay_steps': 45 * steps_per_epoch,
                      'end_learning_rate': 0.0,
                      'power': 0.9
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


@exp_factory.register_config_factory('seg_deeplabv3plus_pascal')
def seg_deeplabv3plus_pascal() -> cfg.ExperimentConfig:
  """Image segmentation on imagenet with resnet deeplabv3+."""
  train_batch_size = 16
  eval_batch_size = 8
  steps_per_epoch = PASCAL_TRAIN_EXAMPLES // train_batch_size
  output_stride = 16
Abdullah Rashwan's avatar
Abdullah Rashwan committed
221
222
223
  aspp_dilation_rates = [6, 12, 18]
  multigrid = [1, 2, 4]
  stem_type = 'v1'
Abdullah Rashwan's avatar
Abdullah Rashwan committed
224
225
226
227
228
  level = int(np.math.log2(output_stride))
  config = cfg.ExperimentConfig(
      task=SemanticSegmentationTask(
          model=SemanticSegmentationModel(
              num_classes=21,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
229
              input_size=[None, None, 3],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
230
231
              backbone=backbones.Backbone(
                  type='dilated_resnet', dilated_resnet=backbones.DilatedResNet(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
232
233
                      model_id=101, output_stride=output_stride,
                      stem_type=stem_type, multigrid=multigrid)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
234
235
236
237
238
239
240
241
242
243
              decoder=decoders.Decoder(
                  type='aspp',
                  aspp=decoders.ASPP(
                      level=level, dilation_rates=aspp_dilation_rates)),
              head=SegmentationHead(
                  level=level,
                  num_convs=2,
                  feature_fusion='deeplabv3plus',
                  low_level=2,
                  low_level_num_filters=48),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
244
245
246
247
248
249
250
251
              norm_activation=common.NormActivation(
                  activation='swish',
                  norm_momentum=0.9997,
                  norm_epsilon=1e-3,
                  use_sync_bn=True)),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'train_aug*'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
252
              output_size=[512, 512],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
253
254
255
256
257
258
              is_training=True,
              global_batch_size=train_batch_size,
              aug_scale_min=0.5,
              aug_scale_max=2.0),
          validation_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'val*'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
259
              output_size=[512, 512],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
260
261
262
              is_training=False,
              global_batch_size=eval_batch_size,
              resize_eval_groundtruth=False,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
263
264
              groundtruth_padded_size=[512, 512],
              drop_remainder=False),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
265
266
          # resnet101
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/deeplab/deeplab_resnet101_imagenet/ckpt-62400',
Abdullah Rashwan's avatar
Abdullah Rashwan committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
          init_checkpoint_modules='backbone'),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=45 * steps_per_epoch,
          validation_steps=PASCAL_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'polynomial',
                  'polynomial': {
                      'initial_learning_rate': 0.007,
                      'decay_steps': 45 * steps_per_epoch,
                      'end_learning_rate': 0.0,
                      'power': 0.9
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378


@exp_factory.register_config_factory('seg_resnetfpn_pascal')
def seg_resnetfpn_pascal() -> cfg.ExperimentConfig:
  """Image segmentation on imagenet with resnet-fpn."""
  train_batch_size = 256
  eval_batch_size = 32
  steps_per_epoch = PASCAL_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=SemanticSegmentationTask(
          model=SemanticSegmentationModel(
              num_classes=21,
              input_size=[512, 512, 3],
              min_level=3,
              max_level=7,
              backbone=backbones.Backbone(
                  type='resnet', resnet=backbones.ResNet(model_id=50)),
              decoder=decoders.Decoder(type='fpn', fpn=decoders.FPN()),
              head=SegmentationHead(level=3, num_convs=3),
              norm_activation=common.NormActivation(
                  activation='swish',
                  use_sync_bn=True)),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'train_aug*'),
              is_training=True,
              global_batch_size=train_batch_size,
              aug_scale_min=0.2,
              aug_scale_max=1.5),
          validation_data=DataConfig(
              input_path=os.path.join(PASCAL_INPUT_PATH_BASE, 'val*'),
              is_training=False,
              global_batch_size=eval_batch_size,
              resize_eval_groundtruth=False,
              groundtruth_padded_size=[512, 512],
              drop_remainder=False),
      ),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=450 * steps_per_epoch,
          validation_steps=PASCAL_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'polynomial',
                  'polynomial': {
                      'initial_learning_rate': 0.007,
                      'decay_steps': 450 * steps_per_epoch,
                      'end_learning_rate': 0.0,
                      'power': 0.9
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config
Abdullah Rashwan's avatar
Abdullah Rashwan committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409


# Cityscapes Dataset (Download and process the dataset yourself)
CITYSCAPES_TRAIN_EXAMPLES = 2975
CITYSCAPES_VAL_EXAMPLES = 500
CITYSCAPES_INPUT_PATH_BASE = 'cityscapes'


@exp_factory.register_config_factory('seg_deeplabv3plus_cityscapes')
def seg_deeplabv3plus_cityscapes() -> cfg.ExperimentConfig:
  """Image segmentation on imagenet with resnet deeplabv3+."""
  train_batch_size = 16
  eval_batch_size = 16
  steps_per_epoch = CITYSCAPES_TRAIN_EXAMPLES // train_batch_size
  output_stride = 16
  aspp_dilation_rates = [6, 12, 18]
  multigrid = [1, 2, 4]
  stem_type = 'v1'
  level = int(np.math.log2(output_stride))
  config = cfg.ExperimentConfig(
      task=SemanticSegmentationTask(
          model=SemanticSegmentationModel(
              num_classes=20,
              input_size=[None, None, 3],
              backbone=backbones.Backbone(
                  type='dilated_resnet', dilated_resnet=backbones.DilatedResNet(
                      model_id=101, output_stride=output_stride,
                      stem_type=stem_type, multigrid=multigrid)),
              decoder=decoders.Decoder(
                  type='aspp',
                  aspp=decoders.ASPP(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
410
411
                      level=level, dilation_rates=aspp_dilation_rates,
                      pool_kernel_size=[512, 1024])),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
              head=SegmentationHead(
                  level=level,
                  num_convs=2,
                  feature_fusion='deeplabv3plus',
                  low_level=2,
                  low_level_num_filters=48),
              norm_activation=common.NormActivation(
                  activation='swish',
                  norm_momentum=0.99,
                  norm_epsilon=1e-3,
                  use_sync_bn=True)),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(CITYSCAPES_INPUT_PATH_BASE,
                                      'train_fine**'),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
427
              output_size=[512, 1024],
Abdullah Rashwan's avatar
Abdullah Rashwan committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
              train_on_crops=True,
              is_training=True,
              global_batch_size=train_batch_size,
              aug_scale_min=0.5,
              aug_scale_max=2.0),
          validation_data=DataConfig(
              input_path=os.path.join(CITYSCAPES_INPUT_PATH_BASE, 'val_fine*'),
              output_size=[1024, 2048],
              is_training=False,
              global_batch_size=eval_batch_size,
              resize_eval_groundtruth=True,
              drop_remainder=False),
          # resnet101
          init_checkpoint='gs://cloud-tpu-checkpoints/vision-2.0/deeplab/deeplab_resnet101_imagenet/ckpt-62400',
          init_checkpoint_modules='backbone'),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=500 * steps_per_epoch,
          validation_steps=CITYSCAPES_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'polynomial',
                  'polynomial': {
                      'initial_learning_rate': 0.01,
                      'decay_steps': 500 * steps_per_epoch,
                      'end_learning_rate': 0.0,
                      'power': 0.9
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config