segmentation_input.py 9.47 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Data parser and processing for segmentation datasets."""

import tensorflow as tf
from official.vision.dataloaders import decoder
from official.vision.dataloaders import parser
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
20
from official.vision.dataloaders import utils
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
21
22
23
24
25
26
27
28
from official.vision.ops import preprocess_ops


class Decoder(decoder.Decoder):
  """A tf.Example decoder for segmentation task."""

  def __init__(self):
    self._keys_to_features = {
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
29
30
31
32
33
34
        'image/encoded':
            tf.io.FixedLenFeature((), tf.string, default_value=''),
        'image/height':
            tf.io.FixedLenFeature((), tf.int64, default_value=0),
        'image/width':
            tf.io.FixedLenFeature((), tf.int64, default_value=0),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
35
36
37
38
39
        'image/segmentation/class/encoded':
            tf.io.FixedLenFeature((), tf.string, default_value='')
    }

  def decode(self, serialized_example):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
40
41
    return tf.io.parse_single_example(serialized_example,
                                      self._keys_to_features)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
42
43
44


class Parser(parser.Parser):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
45
  """Parser to parse an image and its annotations into a dictionary of tensors."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
46
47
48
49
50

  def __init__(self,
               output_size,
               crop_size=None,
               resize_eval_groundtruth=True,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
51
               gt_is_matting_map=False,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
               groundtruth_padded_size=None,
               ignore_label=255,
               aug_rand_hflip=False,
               preserve_aspect_ratio=True,
               aug_scale_min=1.0,
               aug_scale_max=1.0,
               dtype='float32'):
    """Initializes parameters for parsing annotations in the dataset.

    Args:
      output_size: `Tensor` or `list` for [height, width] of output image. The
        output_size should be divided by the largest feature stride 2^max_level.
      crop_size: `Tensor` or `list` for [height, width] of the crop. If
        specified a training crop of size crop_size is returned. This is useful
        for cropping original images during training while evaluating on
        original image sizes.
      resize_eval_groundtruth: `bool`, if True, eval groundtruth masks are
        resized to output_size.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
70
71
72
      gt_is_matting_map: `bool`, if True, the expected mask is in the range
        between 0 and 255. The parser will normalize the value of the mask into
        the range between 0 and 1.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
73
74
75
76
77
      groundtruth_padded_size: `Tensor` or `list` for [height, width]. When
        resize_eval_groundtruth is set to False, the groundtruth masks are
        padded to this size.
      ignore_label: `int` the pixel with ignore label will not used for training
        and evaluation.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
78
79
      aug_rand_hflip: `bool`, if True, augment training with random horizontal
        flip.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
      preserve_aspect_ratio: `bool`, if True, the aspect ratio is preserved,
        otherwise, the image is resized to output_size.
      aug_scale_min: `float`, the minimum scale applied to `output_size` for
        data augmentation during training.
      aug_scale_max: `float`, the maximum scale applied to `output_size` for
        data augmentation during training.
      dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}.
    """
    self._output_size = output_size
    self._crop_size = crop_size
    self._resize_eval_groundtruth = resize_eval_groundtruth
    if (not resize_eval_groundtruth) and (groundtruth_padded_size is None):
      raise ValueError('groundtruth_padded_size ([height, width]) needs to be'
                       'specified when resize_eval_groundtruth is False.')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
94
    self._gt_is_matting_map = gt_is_matting_map
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    self._groundtruth_padded_size = groundtruth_padded_size
    self._ignore_label = ignore_label
    self._preserve_aspect_ratio = preserve_aspect_ratio

    # Data augmentation.
    self._aug_rand_hflip = aug_rand_hflip
    self._aug_scale_min = aug_scale_min
    self._aug_scale_max = aug_scale_max

    # dtype.
    self._dtype = dtype

  def _prepare_image_and_label(self, data):
    """Prepare normalized image and label."""
    image = tf.io.decode_image(data['image/encoded'], channels=3)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
110
111
    label = tf.io.decode_image(
        data['image/segmentation/class/encoded'], channels=1)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    height = data['image/height']
    width = data['image/width']
    image = tf.reshape(image, (height, width, 3))

    label = tf.reshape(label, (1, height, width))
    label = tf.cast(label, tf.float32)
    # Normalizes image with mean and std pixel values.
    image = preprocess_ops.normalize_image(image)

    if not self._preserve_aspect_ratio:
      label = tf.reshape(label, [data['image/height'], data['image/width'], 1])
      image = tf.image.resize(image, self._output_size, method='bilinear')
      label = tf.image.resize(label, self._output_size, method='nearest')
      label = tf.reshape(label[:, :, -1], [1] + self._output_size)

    return image, label

  def _parse_train_data(self, data):
    """Parses data for training and evaluation."""
    image, label = self._prepare_image_and_label(data)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
133
134
135
136
137
138
139
140
141
142
    # Normalize the label into the range of 0 and 1 for matting groundtruth.
    # Note that the input groundtruth labels must be 0 to 255, and do not
    # contain ignore_label. For gt_is_matting_map case, ignore_label is only
    # used for padding the labels.
    if self._gt_is_matting_map:
      scale = tf.constant(255.0, dtype=tf.float32)
      scale = tf.expand_dims(scale, axis=0)
      scale = tf.expand_dims(scale, axis=0)
      label = tf.cast(label, tf.float32) / scale

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
143
144
145
146
147
148
149
150
151
152
    if self._crop_size:

      label = tf.reshape(label, [data['image/height'], data['image/width'], 1])
      # If output_size is specified, resize image, and label to desired
      # output_size.
      if self._output_size:
        image = tf.image.resize(image, self._output_size, method='bilinear')
        label = tf.image.resize(label, self._output_size, method='nearest')

      image_mask = tf.concat([image, label], axis=2)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
153
      image_mask_crop = tf.image.random_crop(image_mask, self._crop_size + [4])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
      image = image_mask_crop[:, :, :-1]
      label = tf.reshape(image_mask_crop[:, :, -1], [1] + self._crop_size)

    # Flips image randomly during training.
    if self._aug_rand_hflip:
      image, _, label = preprocess_ops.random_horizontal_flip(
          image, masks=label)

    train_image_size = self._crop_size if self._crop_size else self._output_size
    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image,
        train_image_size,
        train_image_size,
        aug_scale_min=self._aug_scale_min,
        aug_scale_max=self._aug_scale_max)

    # Resizes and crops boxes.
    image_scale = image_info[2, :]
    offset = image_info[3, :]

    # Pad label and make sure the padded region assigned to the ignore label.
    # The label is first offset by +1 and then padded with 0.
    label += 1
    label = tf.expand_dims(label, axis=3)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
179
180
    label = preprocess_ops.resize_and_crop_masks(label, image_scale,
                                                 train_image_size, offset)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
181
    label -= 1
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
182
183
    label = tf.where(
        tf.equal(label, -1), self._ignore_label * tf.ones_like(label), label)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
184
185
    label = tf.squeeze(label, axis=0)
    valid_mask = tf.not_equal(label, self._ignore_label)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
186

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    labels = {
        'masks': label,
        'valid_masks': valid_mask,
        'image_info': image_info,
    }

    # Cast image as self._dtype
    image = tf.cast(image, dtype=self._dtype)

    return image, labels

  def _parse_eval_data(self, data):
    """Parses data for training and evaluation."""
    image, label = self._prepare_image_and_label(data)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
201
202
203
204
205
206

    # Binarize mask if groundtruth is a matting map
    if self._gt_is_matting_map:
      label = tf.divide(tf.cast(label, dtype=tf.float32), 255.0)
      label = utils.binarize_matting_map(label)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    # The label is first offset by +1 and then padded with 0.
    label += 1
    label = tf.expand_dims(label, axis=3)

    # Resizes and crops image.
    image, image_info = preprocess_ops.resize_and_crop_image(
        image, self._output_size, self._output_size)

    if self._resize_eval_groundtruth:
      # Resizes eval masks to match input image sizes. In that case, mean IoU
      # is computed on output_size not the original size of the images.
      image_scale = image_info[2, :]
      offset = image_info[3, :]
      label = preprocess_ops.resize_and_crop_masks(label, image_scale,
                                                   self._output_size, offset)
    else:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
223
224
225
      label = tf.image.pad_to_bounding_box(label, 0, 0,
                                           self._groundtruth_padded_size[0],
                                           self._groundtruth_padded_size[1])
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
226
227

    label -= 1
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
228
229
    label = tf.where(
        tf.equal(label, -1), self._ignore_label * tf.ones_like(label), label)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
230
231
232
233
234
235
236
237
238
239
240
241
242
    label = tf.squeeze(label, axis=0)

    valid_mask = tf.not_equal(label, self._ignore_label)
    labels = {
        'masks': label,
        'valid_masks': valid_mask,
        'image_info': image_info
    }

    # Cast image as self._dtype
    image = tf.cast(image, dtype=self._dtype)

    return image, labels