# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data parser and processing for segmentation datasets.""" import tensorflow as tf from official.vision.dataloaders import decoder from official.vision.dataloaders import parser from official.vision.dataloaders import utils from official.vision.ops import preprocess_ops class Decoder(decoder.Decoder): """A tf.Example decoder for segmentation task.""" def __init__(self): self._keys_to_features = { 'image/encoded': tf.io.FixedLenFeature((), tf.string, default_value=''), 'image/height': tf.io.FixedLenFeature((), tf.int64, default_value=0), 'image/width': tf.io.FixedLenFeature((), tf.int64, default_value=0), 'image/segmentation/class/encoded': tf.io.FixedLenFeature((), tf.string, default_value='') } def decode(self, serialized_example): return tf.io.parse_single_example(serialized_example, self._keys_to_features) class Parser(parser.Parser): """Parser to parse an image and its annotations into a dictionary of tensors.""" def __init__(self, output_size, crop_size=None, resize_eval_groundtruth=True, gt_is_matting_map=False, groundtruth_padded_size=None, ignore_label=255, aug_rand_hflip=False, preserve_aspect_ratio=True, aug_scale_min=1.0, aug_scale_max=1.0, dtype='float32'): """Initializes parameters for parsing annotations in the dataset. Args: output_size: `Tensor` or `list` for [height, width] of output image. The output_size should be divided by the largest feature stride 2^max_level. crop_size: `Tensor` or `list` for [height, width] of the crop. If specified a training crop of size crop_size is returned. This is useful for cropping original images during training while evaluating on original image sizes. resize_eval_groundtruth: `bool`, if True, eval groundtruth masks are resized to output_size. gt_is_matting_map: `bool`, if True, the expected mask is in the range between 0 and 255. The parser will normalize the value of the mask into the range between 0 and 1. groundtruth_padded_size: `Tensor` or `list` for [height, width]. When resize_eval_groundtruth is set to False, the groundtruth masks are padded to this size. ignore_label: `int` the pixel with ignore label will not used for training and evaluation. aug_rand_hflip: `bool`, if True, augment training with random horizontal flip. preserve_aspect_ratio: `bool`, if True, the aspect ratio is preserved, otherwise, the image is resized to output_size. aug_scale_min: `float`, the minimum scale applied to `output_size` for data augmentation during training. aug_scale_max: `float`, the maximum scale applied to `output_size` for data augmentation during training. dtype: `str`, data type. One of {`bfloat16`, `float32`, `float16`}. """ self._output_size = output_size self._crop_size = crop_size self._resize_eval_groundtruth = resize_eval_groundtruth if (not resize_eval_groundtruth) and (groundtruth_padded_size is None): raise ValueError('groundtruth_padded_size ([height, width]) needs to be' 'specified when resize_eval_groundtruth is False.') self._gt_is_matting_map = gt_is_matting_map self._groundtruth_padded_size = groundtruth_padded_size self._ignore_label = ignore_label self._preserve_aspect_ratio = preserve_aspect_ratio # Data augmentation. self._aug_rand_hflip = aug_rand_hflip self._aug_scale_min = aug_scale_min self._aug_scale_max = aug_scale_max # dtype. self._dtype = dtype def _prepare_image_and_label(self, data): """Prepare normalized image and label.""" image = tf.io.decode_image(data['image/encoded'], channels=3) label = tf.io.decode_image( data['image/segmentation/class/encoded'], channels=1) height = data['image/height'] width = data['image/width'] image = tf.reshape(image, (height, width, 3)) label = tf.reshape(label, (1, height, width)) label = tf.cast(label, tf.float32) # Normalizes image with mean and std pixel values. image = preprocess_ops.normalize_image(image) if not self._preserve_aspect_ratio: label = tf.reshape(label, [data['image/height'], data['image/width'], 1]) image = tf.image.resize(image, self._output_size, method='bilinear') label = tf.image.resize(label, self._output_size, method='nearest') label = tf.reshape(label[:, :, -1], [1] + self._output_size) return image, label def _parse_train_data(self, data): """Parses data for training and evaluation.""" image, label = self._prepare_image_and_label(data) # Normalize the label into the range of 0 and 1 for matting groundtruth. # Note that the input groundtruth labels must be 0 to 255, and do not # contain ignore_label. For gt_is_matting_map case, ignore_label is only # used for padding the labels. if self._gt_is_matting_map: scale = tf.constant(255.0, dtype=tf.float32) scale = tf.expand_dims(scale, axis=0) scale = tf.expand_dims(scale, axis=0) label = tf.cast(label, tf.float32) / scale if self._crop_size: label = tf.reshape(label, [data['image/height'], data['image/width'], 1]) # If output_size is specified, resize image, and label to desired # output_size. if self._output_size: image = tf.image.resize(image, self._output_size, method='bilinear') label = tf.image.resize(label, self._output_size, method='nearest') image_mask = tf.concat([image, label], axis=2) image_mask_crop = tf.image.random_crop(image_mask, self._crop_size + [4]) image = image_mask_crop[:, :, :-1] label = tf.reshape(image_mask_crop[:, :, -1], [1] + self._crop_size) # Flips image randomly during training. if self._aug_rand_hflip: image, _, label = preprocess_ops.random_horizontal_flip( image, masks=label) train_image_size = self._crop_size if self._crop_size else self._output_size # Resizes and crops image. image, image_info = preprocess_ops.resize_and_crop_image( image, train_image_size, train_image_size, aug_scale_min=self._aug_scale_min, aug_scale_max=self._aug_scale_max) # Resizes and crops boxes. image_scale = image_info[2, :] offset = image_info[3, :] # Pad label and make sure the padded region assigned to the ignore label. # The label is first offset by +1 and then padded with 0. label += 1 label = tf.expand_dims(label, axis=3) label = preprocess_ops.resize_and_crop_masks(label, image_scale, train_image_size, offset) label -= 1 label = tf.where( tf.equal(label, -1), self._ignore_label * tf.ones_like(label), label) label = tf.squeeze(label, axis=0) valid_mask = tf.not_equal(label, self._ignore_label) labels = { 'masks': label, 'valid_masks': valid_mask, 'image_info': image_info, } # Cast image as self._dtype image = tf.cast(image, dtype=self._dtype) return image, labels def _parse_eval_data(self, data): """Parses data for training and evaluation.""" image, label = self._prepare_image_and_label(data) # Binarize mask if groundtruth is a matting map if self._gt_is_matting_map: label = tf.divide(tf.cast(label, dtype=tf.float32), 255.0) label = utils.binarize_matting_map(label) # The label is first offset by +1 and then padded with 0. label += 1 label = tf.expand_dims(label, axis=3) # Resizes and crops image. image, image_info = preprocess_ops.resize_and_crop_image( image, self._output_size, self._output_size) if self._resize_eval_groundtruth: # Resizes eval masks to match input image sizes. In that case, mean IoU # is computed on output_size not the original size of the images. image_scale = image_info[2, :] offset = image_info[3, :] label = preprocess_ops.resize_and_crop_masks(label, image_scale, self._output_size, offset) else: label = tf.image.pad_to_bounding_box(label, 0, 0, self._groundtruth_padded_size[0], self._groundtruth_padded_size[1]) label -= 1 label = tf.where( tf.equal(label, -1), self._ignore_label * tf.ones_like(label), label) label = tf.squeeze(label, axis=0) valid_mask = tf.not_equal(label, self._ignore_label) labels = { 'masks': label, 'valid_masks': valid_mask, 'image_info': image_info } # Cast image as self._dtype image = tf.cast(image, dtype=self._dtype) return image, labels