question_answering_dataloader.py 4.3 KB
Newer Older
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Loads dataset for the question answering (e.g, SQuAD) task."""
from typing import Mapping, Optional
Hongkun Yu's avatar
Hongkun Yu committed
18

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
19
20
import dataclasses
import tensorflow as tf
21
from official.core import config_definitions as cfg
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
22
from official.core import input_reader
23
from official.nlp.data import data_loader
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
25
26
27
28
29
from official.nlp.data import data_loader_factory


@dataclasses.dataclass
class QADataConfig(cfg.DataConfig):
  """Data config for question answering task (tasks/question_answering)."""
30
31
  # For training, `input_path` is expected to be a pre-processed TFRecord file,
  # while for evaluation, it is expected to be a raw JSON file (b/173814590).
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
32
33
34
35
36
37
38
39
40
41
  input_path: str = ''
  global_batch_size: int = 48
  is_training: bool = True
  seq_length: int = 384
  # Settings below are question answering specific.
  version_2_with_negative: bool = False
  # Settings below are only used for eval mode.
  input_preprocessed_data_path: str = ''
  doc_stride: int = 128
  query_length: int = 64
Chen Chen's avatar
Chen Chen committed
42
43
  # The path to the vocab file of word piece tokenizer or the
  # model of the sentence piece tokenizer.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
44
45
46
  vocab_file: str = ''
  tokenization: str = 'WordPiece'  # WordPiece or SentencePiece
  do_lower_case: bool = True
47
  xlnet_format: bool = False
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
48
49
50


@data_loader_factory.register_data_loader_cls(QADataConfig)
51
class QuestionAnsweringDataLoader(data_loader.DataLoader):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
52
53
54
55
56
57
  """A class to load dataset for sentence prediction (classification) task."""

  def __init__(self, params):
    self._params = params
    self._seq_length = params.seq_length
    self._is_training = params.is_training
58
    self._xlnet_format = params.xlnet_format
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
59
60
61
62
63
64
65
66

  def _decode(self, record: tf.Tensor):
    """Decodes a serialized tf.Example."""
    name_to_features = {
        'input_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
        'input_mask': tf.io.FixedLenFeature([self._seq_length], tf.int64),
        'segment_ids': tf.io.FixedLenFeature([self._seq_length], tf.int64),
    }
67
68
69
70
71
72
73
    if self._xlnet_format:
      name_to_features['class_index'] = tf.io.FixedLenFeature([], tf.int64)
      name_to_features['paragraph_mask'] = tf.io.FixedLenFeature(
          [self._seq_length], tf.int64)
      if self._is_training:
        name_to_features['is_impossible'] = tf.io.FixedLenFeature([], tf.int64)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    if self._is_training:
      name_to_features['start_positions'] = tf.io.FixedLenFeature([], tf.int64)
      name_to_features['end_positions'] = tf.io.FixedLenFeature([], tf.int64)
    else:
      name_to_features['unique_ids'] = tf.io.FixedLenFeature([], tf.int64)
    example = tf.io.parse_single_example(record, name_to_features)

    # tf.Example only supports tf.int64, but the TPU only supports tf.int32.
    # So cast all int64 to int32.
    for name in example:
      t = example[name]
      if t.dtype == tf.int64:
        t = tf.cast(t, tf.int32)
      example[name] = t

    return example

  def _parse(self, record: Mapping[str, tf.Tensor]):
    """Parses raw tensors into a dict of tensors to be consumed by the model."""
    x, y = {}, {}
    for name, tensor in record.items():
95
      if name in ('start_positions', 'end_positions', 'is_impossible'):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
96
97
98
99
100
101
102
        y[name] = tensor
      elif name == 'input_ids':
        x['input_word_ids'] = tensor
      elif name == 'segment_ids':
        x['input_type_ids'] = tensor
      else:
        x[name] = tensor
103
104
      if name == 'start_positions' and self._xlnet_format:
        x[name] = tensor
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
105
106
107
108
109
110
111
    return (x, y)

  def load(self, input_context: Optional[tf.distribute.InputContext] = None):
    """Returns a tf.dataset.Dataset."""
    reader = input_reader.InputReader(
        params=self._params, decoder_fn=self._decode, parser_fn=self._parse)
    return reader.read(input_context)