run_pretraining.py 8.44 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Hongkun Yu's avatar
Hongkun Yu committed
15
"""Run masked LM/next sentence pre-training for BERT in TF 2.x."""
16

Hongkun Yu's avatar
Hongkun Yu committed
17
# Import libraries
18
19
20
from absl import app
from absl import flags
from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
21
import gin
22
import tensorflow as tf
23
from official.common import distribute_utils
24
from official.modeling import performance
25
from official.nlp import optimization
26
from official.nlp.bert import bert_models
27
from official.nlp.bert import common_flags
28
from official.nlp.bert import configs
29
from official.nlp.bert import input_pipeline
30
from official.nlp.bert import model_training_utils
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

flags.DEFINE_string('input_files', None,
                    'File path to retrieve training data for pre-training.')
# Model training specific flags.
flags.DEFINE_integer(
    'max_seq_length', 128,
    'The maximum total input sequence length after WordPiece tokenization. '
    'Sequences longer than this will be truncated, and sequences shorter '
    'than this will be padded.')
flags.DEFINE_integer('max_predictions_per_seq', 20,
                     'Maximum predictions per sequence_output.')
flags.DEFINE_integer('train_batch_size', 32, 'Total batch size for training.')
flags.DEFINE_integer('num_steps_per_epoch', 1000,
                     'Total number of training steps to run per epoch.')
flags.DEFINE_float('warmup_steps', 10000,
                   'Warmup steps for Adam weight decay optimizer.')
48
49
flags.DEFINE_bool('use_next_sentence_label', True,
                  'Whether to use next sentence label to compute final loss.')
Chen Chen's avatar
Chen Chen committed
50
51
52
flags.DEFINE_bool('train_summary_interval', 0, 'Step interval for training '
                  'summaries. If the value is a negative number, '
                  'then training summaries are not enabled.')
53

54
55
common_flags.define_common_bert_flags()

56
57
58
FLAGS = flags.FLAGS


Hongkun Yu's avatar
Hongkun Yu committed
59
def get_pretrain_dataset_fn(input_file_pattern, seq_length,
60
61
                            max_predictions_per_seq, global_batch_size,
                            use_next_sentence_label=True):
62
  """Returns input dataset from input file string."""
63
  def _dataset_fn(ctx=None):
64
    """Returns tf.data.Dataset for distributed BERT pretraining."""
Hongkun Yu's avatar
Hongkun Yu committed
65
    input_patterns = input_file_pattern.split(',')
Hongkun Yu's avatar
Hongkun Yu committed
66
    batch_size = ctx.get_per_replica_batch_size(global_batch_size)
67
    train_dataset = input_pipeline.create_pretrain_dataset(
Hongkun Yu's avatar
Hongkun Yu committed
68
        input_patterns,
69
70
71
72
        seq_length,
        max_predictions_per_seq,
        batch_size,
        is_training=True,
73
74
        input_pipeline_context=ctx,
        use_next_sentence_label=use_next_sentence_label)
75
76
    return train_dataset

Hongkun Yu's avatar
Hongkun Yu committed
77
  return _dataset_fn
78
79


80
def get_loss_fn():
81
82
83
  """Returns loss function for BERT pretraining."""

  def _bert_pretrain_loss_fn(unused_labels, losses, **unused_args):
84
    return tf.reduce_mean(losses)
85
86
87
88
89
90

  return _bert_pretrain_loss_fn


def run_customized_training(strategy,
                            bert_config,
André Susano Pinto's avatar
André Susano Pinto committed
91
                            init_checkpoint,
92
93
94
95
                            max_seq_length,
                            max_predictions_per_seq,
                            model_dir,
                            steps_per_epoch,
96
                            steps_per_loop,
97
98
99
                            epochs,
                            initial_lr,
                            warmup_steps,
100
101
                            end_lr,
                            optimizer_type,
102
                            input_files,
103
                            train_batch_size,
Chen Chen's avatar
Chen Chen committed
104
                            use_next_sentence_label=True,
Chen Chen's avatar
Chen Chen committed
105
                            train_summary_interval=0,
Zongwei Zhou's avatar
Zongwei Zhou committed
106
107
108
                            custom_callbacks=None,
                            explicit_allreduce=False,
                            pre_allreduce_callbacks=None,
Zongwei Zhou's avatar
Zongwei Zhou committed
109
110
                            post_allreduce_callbacks=None,
                            allreduce_bytes_per_pack=0):
111
112
  """Run BERT pretrain model training using low-level API."""

Hongkun Yu's avatar
Hongkun Yu committed
113
114
  train_input_fn = get_pretrain_dataset_fn(input_files, max_seq_length,
                                           max_predictions_per_seq,
115
116
                                           train_batch_size,
                                           use_next_sentence_label)
117
118

  def _get_pretrain_model():
119
    """Gets a pretraining model."""
120
    pretrain_model, core_model = bert_models.pretrain_model(
121
122
        bert_config, max_seq_length, max_predictions_per_seq,
        use_next_sentence_label=use_next_sentence_label)
123
    optimizer = optimization.create_optimizer(
124
        initial_lr, steps_per_epoch * epochs, warmup_steps,
125
        end_lr, optimizer_type)
126
127
128
    pretrain_model.optimizer = performance.configure_optimizer(
        optimizer,
        use_float16=common_flags.use_float16(),
Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
129
130
        use_graph_rewrite=common_flags.use_graph_rewrite(),
        use_experimental_api=False)
131
132
    return pretrain_model, core_model

133
  trained_model = model_training_utils.run_customized_training_loop(
134
135
      strategy=strategy,
      model_fn=_get_pretrain_model,
136
137
      loss_fn=get_loss_fn(),
      scale_loss=FLAGS.scale_loss,
138
      model_dir=model_dir,
André Susano Pinto's avatar
André Susano Pinto committed
139
      init_checkpoint=init_checkpoint,
140
141
      train_input_fn=train_input_fn,
      steps_per_epoch=steps_per_epoch,
142
      steps_per_loop=steps_per_loop,
Chen Chen's avatar
Chen Chen committed
143
      epochs=epochs,
Chen Chen's avatar
Chen Chen committed
144
      sub_model_export_name='pretrained/bert_model',
Zongwei Zhou's avatar
Zongwei Zhou committed
145
146
147
      explicit_allreduce=explicit_allreduce,
      pre_allreduce_callbacks=pre_allreduce_callbacks,
      post_allreduce_callbacks=post_allreduce_callbacks,
Zongwei Zhou's avatar
Zongwei Zhou committed
148
      allreduce_bytes_per_pack=allreduce_bytes_per_pack,
Chen Chen's avatar
Chen Chen committed
149
      train_summary_interval=train_summary_interval,
Chen Chen's avatar
Chen Chen committed
150
      custom_callbacks=custom_callbacks)
151

152
153
  return trained_model

154

Chen Chen's avatar
Chen Chen committed
155
def run_bert_pretrain(strategy, custom_callbacks=None):
156
157
  """Runs BERT pre-training."""

158
  bert_config = configs.BertConfig.from_json_file(FLAGS.bert_config_file)
159
160
161
162
  if not strategy:
    raise ValueError('Distribution strategy is not specified.')

  # Runs customized training loop.
Chen Chen's avatar
Chen Chen committed
163
  logging.info('Training using customized training loop TF 2.0 with distributed'
164
165
               'strategy.')

Reed Wanderman-Milne's avatar
Reed Wanderman-Milne committed
166
167
  performance.set_mixed_precision_policy(common_flags.dtype(),
                                         use_experimental_api=False)
168

Zongwei Zhou's avatar
Zongwei Zhou committed
169
170
171
172
173
174
  # Only when explicit_allreduce = True, post_allreduce_callbacks and
  # allreduce_bytes_per_pack will take effect. optimizer.apply_gradients() no
  # longer implicitly allreduce gradients, users manually allreduce gradient and
  # pass the allreduced grads_and_vars to apply_gradients().
  # With explicit_allreduce = True, clip_by_global_norm is moved to after
  # allreduce.
175
176
177
  return run_customized_training(
      strategy,
      bert_config,
André Susano Pinto's avatar
André Susano Pinto committed
178
      FLAGS.init_checkpoint,  # Used to initialize only the BERT submodel.
179
180
181
182
      FLAGS.max_seq_length,
      FLAGS.max_predictions_per_seq,
      FLAGS.model_dir,
      FLAGS.num_steps_per_epoch,
183
      FLAGS.steps_per_loop,
184
185
186
      FLAGS.num_train_epochs,
      FLAGS.learning_rate,
      FLAGS.warmup_steps,
187
188
      FLAGS.end_lr,
      FLAGS.optimizer_type,
189
      FLAGS.input_files,
190
      FLAGS.train_batch_size,
Chen Chen's avatar
Chen Chen committed
191
      FLAGS.use_next_sentence_label,
Chen Chen's avatar
Chen Chen committed
192
      FLAGS.train_summary_interval,
Zongwei Zhou's avatar
Zongwei Zhou committed
193
194
      custom_callbacks=custom_callbacks,
      explicit_allreduce=FLAGS.explicit_allreduce,
195
196
      pre_allreduce_callbacks=[
          model_training_utils.clip_by_global_norm_callback
Zongwei Zhou's avatar
Zongwei Zhou committed
197
198
      ],
      allreduce_bytes_per_pack=FLAGS.allreduce_bytes_per_pack)
199
200
201


def main(_):
Hongkun Yu's avatar
Hongkun Yu committed
202
  gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_param)
203
204
  if not FLAGS.model_dir:
    FLAGS.model_dir = '/tmp/bert20/'
Zongwei Zhou's avatar
Zongwei Zhou committed
205
206
  # Configures cluster spec for multi-worker distribution strategy.
  if FLAGS.num_gpus > 0:
207
208
    _ = distribute_utils.configure_cluster(FLAGS.worker_hosts, FLAGS.task_index)
  strategy = distribute_utils.get_distribution_strategy(
209
210
      distribution_strategy=FLAGS.distribution_strategy,
      num_gpus=FLAGS.num_gpus,
Zongwei Zhou's avatar
Zongwei Zhou committed
211
      all_reduce_alg=FLAGS.all_reduce_alg,
212
      tpu_address=FLAGS.tpu)
213
214
215
  if strategy:
    print('***** Number of cores used : ', strategy.num_replicas_in_sync)

216
  run_bert_pretrain(strategy)
217
218
219
220


if __name__ == '__main__':
  app.run(main)