model_training_utils_test.py 8.98 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for official.modeling.training.model_training_utils."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

from absl.testing import parameterized
24
from absl.testing.absltest import mock
Hongkun Yu's avatar
Hongkun Yu committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import numpy as np
import tensorflow as tf

from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.modeling import model_training_utils


def eager_strategy_combinations():
  return combinations.combine(
      distribution=[
          strategy_combinations.default_strategy,
          strategy_combinations.tpu_strategy,
          strategy_combinations.one_device_strategy_gpu,
          strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
          strategy_combinations.mirrored_strategy_with_two_gpus,
      ],
      mode='eager',
  )


def eager_gpu_strategy_combinations():
  return combinations.combine(
      distribution=[
          strategy_combinations.default_strategy,
          strategy_combinations.one_device_strategy_gpu,
          strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
          strategy_combinations.mirrored_strategy_with_two_gpus,
      ],
      mode='eager',
  )


def create_fake_data_input_fn(batch_size, features_shape, num_classes):
  """Creates a dummy input function with the given feature and label shapes.

  Args:
    batch_size: integer.
    features_shape: list[int]. Feature shape for an individual example.
    num_classes: integer. Number of labels.

  Returns:
    An input function that is usable in the executor.
  """

Hongkun Yu's avatar
Hongkun Yu committed
70
  def _dataset_fn(input_context=None):
Hongkun Yu's avatar
Hongkun Yu committed
71
    """An input function for generating fake data."""
Hongkun Yu's avatar
Hongkun Yu committed
72
    local_batch_size = input_context.get_per_replica_batch_size(batch_size)
Hongkun Yu's avatar
Hongkun Yu committed
73
74
75
76
    features = np.random.rand(64, *features_shape)
    labels = np.random.randint(2, size=[64, num_classes])
    # Convert the inputs to a Dataset.
    dataset = tf.data.Dataset.from_tensor_slices((features, labels))
Hongkun Yu's avatar
Hongkun Yu committed
77
78
    dataset = dataset.shard(input_context.num_input_pipelines,
                            input_context.input_pipeline_id)
Hongkun Yu's avatar
Hongkun Yu committed
79
80
81
82
83
84
85
86
87

    def _assign_dtype(features, labels):
      features = tf.cast(features, tf.float32)
      labels = tf.cast(labels, tf.float32)
      return features, labels

    # Shuffle, repeat, and batch the examples.
    dataset = dataset.map(_assign_dtype)
    dataset = dataset.shuffle(64).repeat()
Hongkun Yu's avatar
Hongkun Yu committed
88
    dataset = dataset.batch(local_batch_size, drop_remainder=True)
Hongkun Yu's avatar
Hongkun Yu committed
89
90
91
    dataset = dataset.prefetch(buffer_size=64)
    return dataset

Hongkun Yu's avatar
Hongkun Yu committed
92
  return _dataset_fn
Hongkun Yu's avatar
Hongkun Yu committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142


def create_model_fn(input_shape, num_classes, use_float16=False):

  def _model_fn():
    """A one-layer softmax model suitable for testing."""
    input_layer = tf.keras.layers.Input(shape=input_shape)
    x = tf.keras.layers.Dense(num_classes, activation='relu')(input_layer)
    output_layer = tf.keras.layers.Dense(num_classes, activation='softmax')(x)
    sub_model = tf.keras.models.Model(input_layer, x, name='sub_model')
    model = tf.keras.models.Model(input_layer, output_layer, name='model')
    model.add_metric(
        tf.reduce_mean(input_layer), name='mean_input', aggregation='mean')
    model.optimizer = tf.keras.optimizers.SGD(learning_rate=0.1, momentum=0.9)
    if use_float16:
      model.optimizer = (
          tf.keras.mixed_precision.experimental.LossScaleOptimizer(
              model.optimizer, loss_scale='dynamic'))
    return model, sub_model

  return _model_fn


def metric_fn():
  """Gets a tf.keras metric object."""
  return tf.keras.metrics.CategoricalAccuracy(name='accuracy', dtype=tf.float32)


def summaries_with_matching_keyword(keyword, summary_dir):
  """Yields summary protos matching given keyword from event file."""
  event_paths = tf.io.gfile.glob(os.path.join(summary_dir, 'events*'))
  for event in tf.compat.v1.train.summary_iterator(event_paths[-1]):
    if event.summary is not None:
      for value in event.summary.value:
        if keyword in value.tag:
          tf.compat.v1.logging.error(event)
          yield event.summary


def check_eventfile_for_keyword(keyword, summary_dir):
  """Checks event files for the keyword."""
  return any(summaries_with_matching_keyword(keyword, summary_dir))


class ModelTrainingUtilsTest(tf.test.TestCase, parameterized.TestCase):

  def setUp(self):
    super(ModelTrainingUtilsTest, self).setUp()
    self._model_fn = create_model_fn(input_shape=[128], num_classes=3)

Hongkun Yu's avatar
Hongkun Yu committed
143
  def run_training(self, strategy, model_dir, steps_per_loop, run_eagerly):
Hongkun Yu's avatar
Hongkun Yu committed
144
145
    input_fn = create_fake_data_input_fn(
        batch_size=8, features_shape=[128], num_classes=3)
Hongkun Yu's avatar
Hongkun Yu committed
146
    model_training_utils.run_customized_training_loop(
Hongkun Yu's avatar
Hongkun Yu committed
147
        strategy=strategy,
Hongkun Yu's avatar
Hongkun Yu committed
148
149
150
151
152
153
        model_fn=self._model_fn,
        loss_fn=tf.keras.losses.categorical_crossentropy,
        model_dir=model_dir,
        steps_per_epoch=20,
        steps_per_loop=steps_per_loop,
        epochs=2,
Hongkun Yu's avatar
Hongkun Yu committed
154
155
        train_input_fn=input_fn,
        eval_input_fn=input_fn,
Hongkun Yu's avatar
Hongkun Yu committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        eval_steps=10,
        init_checkpoint=None,
        metric_fn=metric_fn,
        custom_callbacks=None,
        run_eagerly=run_eagerly)

  @combinations.generate(eager_strategy_combinations())
  def test_train_eager_single_step(self, distribution):
    model_dir = self.get_temp_dir()
    if isinstance(distribution, tf.distribute.experimental.TPUStrategy):
      with self.assertRaises(ValueError):
        self.run_training(
            distribution, model_dir, steps_per_loop=1, run_eagerly=True)
    else:
      self.run_training(
          distribution, model_dir, steps_per_loop=1, run_eagerly=True)

  @combinations.generate(eager_gpu_strategy_combinations())
  def test_train_eager_mixed_precision(self, distribution):
    model_dir = self.get_temp_dir()
    policy = tf.keras.mixed_precision.experimental.Policy('mixed_float16')
    tf.keras.mixed_precision.experimental.set_policy(policy)
    self._model_fn = create_model_fn(
        input_shape=[128], num_classes=3, use_float16=True)
    self.run_training(
        distribution, model_dir, steps_per_loop=1, run_eagerly=True)

Hongkun Yu's avatar
Hongkun Yu committed
183
184
185
186
187
188
  @combinations.generate(eager_strategy_combinations())
  def test_train_check_artifacts(self, distribution):
    model_dir = self.get_temp_dir()
    self.run_training(
        distribution, model_dir, steps_per_loop=10, run_eagerly=False)

Hongkun Yu's avatar
Hongkun Yu committed
189
190
191
    # Two checkpoints should be saved after two epochs.
    self.assertNotEmpty(tf.io.gfile.glob(os.path.join(model_dir, 'ctl_step_*')))
    self.assertNotEmpty(
192
193
        tf.io.gfile.glob(
            os.path.join(model_dir, 'summaries/training_summary*')))
Hongkun Yu's avatar
Hongkun Yu committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

    # Loss and accuracy values should be written into summaries.
    self.assertTrue(
        check_eventfile_for_keyword('loss',
                                    os.path.join(model_dir, 'summaries/train')))
    self.assertTrue(
        check_eventfile_for_keyword('accuracy',
                                    os.path.join(model_dir, 'summaries/train')))
    self.assertTrue(
        check_eventfile_for_keyword('mean_input',
                                    os.path.join(model_dir, 'summaries/train')))
    self.assertTrue(
        check_eventfile_for_keyword('accuracy',
                                    os.path.join(model_dir, 'summaries/eval')))
    self.assertTrue(
        check_eventfile_for_keyword('mean_input',
                                    os.path.join(model_dir, 'summaries/eval')))

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
  @combinations.generate(
      combinations.combine(
          distribution=[
              strategy_combinations.one_device_strategy_gpu,
          ],
          mode='eager',
      ))
  def test_train_check_artifacts_non_chief(self, distribution):
    # We shouldn't export artifacts on non-chief workers. Since there's no easy
    # way to test with real MultiWorkerMirroredStrategy, we patch the strategy
    # to make it as if it's MultiWorkerMirroredStrategy on non-chief workers.
    extended = distribution.extended
    with mock.patch.object(extended.__class__, 'should_checkpoint',
                           new_callable=mock.PropertyMock, return_value=False), \
         mock.patch.object(extended.__class__, 'should_save_summary',
                           new_callable=mock.PropertyMock, return_value=False):
      model_dir = self.get_temp_dir()
      self.run_training(
          distribution, model_dir, steps_per_loop=10, run_eagerly=False)
      self.assertEmpty(tf.io.gfile.listdir(model_dir))

Hongkun Yu's avatar
Hongkun Yu committed
233
234
235
236

if __name__ == '__main__':
  assert tf.version.VERSION.startswith('2.')
  tf.test.main()