model_training_utils_test.py 7.75 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for official.modeling.training.model_training_utils."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

from absl.testing import parameterized
import numpy as np
import tensorflow as tf

from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.modeling import model_training_utils


def eager_strategy_combinations():
  return combinations.combine(
      distribution=[
          strategy_combinations.default_strategy,
          strategy_combinations.tpu_strategy,
          strategy_combinations.one_device_strategy_gpu,
          strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
          strategy_combinations.mirrored_strategy_with_two_gpus,
      ],
      mode='eager',
  )


def eager_gpu_strategy_combinations():
  return combinations.combine(
      distribution=[
          strategy_combinations.default_strategy,
          strategy_combinations.one_device_strategy_gpu,
          strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
          strategy_combinations.mirrored_strategy_with_two_gpus,
      ],
      mode='eager',
  )


def create_fake_data_input_fn(batch_size, features_shape, num_classes):
  """Creates a dummy input function with the given feature and label shapes.

  Args:
    batch_size: integer.
    features_shape: list[int]. Feature shape for an individual example.
    num_classes: integer. Number of labels.

  Returns:
    An input function that is usable in the executor.
  """

  def _input_fn():
    """An input function for generating fake data."""
    features = np.random.rand(64, *features_shape)
    labels = np.random.randint(2, size=[64, num_classes])
    # Convert the inputs to a Dataset.
    dataset = tf.data.Dataset.from_tensor_slices((features, labels))

    def _assign_dtype(features, labels):
      features = tf.cast(features, tf.float32)
      labels = tf.cast(labels, tf.float32)
      return features, labels

    # Shuffle, repeat, and batch the examples.
    dataset = dataset.map(_assign_dtype)
    dataset = dataset.shuffle(64).repeat()
    dataset = dataset.batch(batch_size, drop_remainder=True)
    dataset = dataset.prefetch(buffer_size=64)
    return dataset

  return _input_fn


def create_model_fn(input_shape, num_classes, use_float16=False):

  def _model_fn():
    """A one-layer softmax model suitable for testing."""
    input_layer = tf.keras.layers.Input(shape=input_shape)
    x = tf.keras.layers.Dense(num_classes, activation='relu')(input_layer)
    output_layer = tf.keras.layers.Dense(num_classes, activation='softmax')(x)
    sub_model = tf.keras.models.Model(input_layer, x, name='sub_model')
    model = tf.keras.models.Model(input_layer, output_layer, name='model')
    model.add_metric(
        tf.reduce_mean(input_layer), name='mean_input', aggregation='mean')
    model.optimizer = tf.keras.optimizers.SGD(learning_rate=0.1, momentum=0.9)
    if use_float16:
      model.optimizer = (
          tf.keras.mixed_precision.experimental.LossScaleOptimizer(
              model.optimizer, loss_scale='dynamic'))
    return model, sub_model

  return _model_fn


def metric_fn():
  """Gets a tf.keras metric object."""
  return tf.keras.metrics.CategoricalAccuracy(name='accuracy', dtype=tf.float32)


def summaries_with_matching_keyword(keyword, summary_dir):
  """Yields summary protos matching given keyword from event file."""
  event_paths = tf.io.gfile.glob(os.path.join(summary_dir, 'events*'))
  for event in tf.compat.v1.train.summary_iterator(event_paths[-1]):
    if event.summary is not None:
      for value in event.summary.value:
        if keyword in value.tag:
          tf.compat.v1.logging.error(event)
          yield event.summary


def check_eventfile_for_keyword(keyword, summary_dir):
  """Checks event files for the keyword."""
  return any(summaries_with_matching_keyword(keyword, summary_dir))


class ModelTrainingUtilsTest(tf.test.TestCase, parameterized.TestCase):

  def setUp(self):
    super(ModelTrainingUtilsTest, self).setUp()
    self._input_fn = create_fake_data_input_fn(
        batch_size=8, features_shape=[128], num_classes=3)
    self._model_fn = create_model_fn(input_shape=[128], num_classes=3)

  def run_training(self, distribution, model_dir, steps_per_loop, run_eagerly):
    model_training_utils.run_customized_training_loop(
        strategy=distribution,
        model_fn=self._model_fn,
        loss_fn=tf.keras.losses.categorical_crossentropy,
        model_dir=model_dir,
        steps_per_epoch=20,
        steps_per_loop=steps_per_loop,
        epochs=2,
        train_input_fn=self._input_fn,
        eval_input_fn=self._input_fn,
        eval_steps=10,
        init_checkpoint=None,
        metric_fn=metric_fn,
        custom_callbacks=None,
        run_eagerly=run_eagerly)

  @combinations.generate(eager_strategy_combinations())
  def test_train_eager_single_step(self, distribution):
    model_dir = self.get_temp_dir()
    if isinstance(distribution, tf.distribute.experimental.TPUStrategy):
      with self.assertRaises(ValueError):
        self.run_training(
            distribution, model_dir, steps_per_loop=1, run_eagerly=True)
    else:
      self.run_training(
          distribution, model_dir, steps_per_loop=1, run_eagerly=True)

  @combinations.generate(eager_gpu_strategy_combinations())
  def test_train_eager_mixed_precision(self, distribution):
    model_dir = self.get_temp_dir()
    policy = tf.keras.mixed_precision.experimental.Policy('mixed_float16')
    tf.keras.mixed_precision.experimental.set_policy(policy)
    self._model_fn = create_model_fn(
        input_shape=[128], num_classes=3, use_float16=True)
    self.run_training(
        distribution, model_dir, steps_per_loop=1, run_eagerly=True)

  @combinations.generate(eager_strategy_combinations())
  def test_train_check_artifacts(self, distribution):
    model_dir = self.get_temp_dir()
    self.run_training(
        distribution, model_dir, steps_per_loop=10, run_eagerly=False)

    # Two checkpoints should be saved after two epochs.
    self.assertNotEmpty(tf.io.gfile.glob(os.path.join(model_dir, 'ctl_step_*')))
    self.assertNotEmpty(
188
189
        tf.io.gfile.glob(
            os.path.join(model_dir, 'summaries/training_summary*')))
Hongkun Yu's avatar
Hongkun Yu committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

    # Loss and accuracy values should be written into summaries.
    self.assertTrue(
        check_eventfile_for_keyword('loss',
                                    os.path.join(model_dir, 'summaries/train')))
    self.assertTrue(
        check_eventfile_for_keyword('accuracy',
                                    os.path.join(model_dir, 'summaries/train')))
    self.assertTrue(
        check_eventfile_for_keyword('mean_input',
                                    os.path.join(model_dir, 'summaries/train')))
    self.assertTrue(
        check_eventfile_for_keyword('accuracy',
                                    os.path.join(model_dir, 'summaries/eval')))
    self.assertTrue(
        check_eventfile_for_keyword('mean_input',
                                    os.path.join(model_dir, 'summaries/eval')))


if __name__ == '__main__':
  assert tf.version.VERSION.startswith('2.')
  tf.test.main()