visualwakewords.py 4.49 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Provides data for Visual WakeWords Dataset with images+labels.

Visual WakeWords Dataset derives from the COCO dataset to design tiny models
classifying two classes, such as person/not-person. The COCO annotations
are filtered to two classes: person and not-person (or another user-defined
category). Bounding boxes for small objects with area less than 5% of the image
area are filtered out.
See build_visualwakewords_data.py which generates the Visual WakeWords dataset
annotations from the raw COCO dataset and converts them to TFRecord.

"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import tensorflow as tf

from datasets import dataset_utils


slim = tf.contrib.slim

_FILE_PATTERN = '%s.record-*'

_SPLITS_TO_SIZES = {
    'train': 82783,
    'validation': 40504,
}


_ITEMS_TO_DESCRIPTIONS = {
    'image': 'A color image of varying height and width.',
    'label': 'The label id of the image, an integer in {0, 1}',
    'object/bbox': 'A list of bounding boxes.',
    'object/label': 'A list of labels, all objects belong to the same class.',
}

_NUM_CLASSES = 2

# labels file
LABELS_FILENAME = 'labels.txt'


def get_split(split_name, dataset_dir, file_pattern=None, reader=None):
  """Gets a dataset tuple with instructions for reading ImageNet.

  Args:
    split_name: A train/test split name.
    dataset_dir: The base directory of the dataset sources.
    file_pattern: The file pattern to use when matching the dataset sources. It
      is assumed that the pattern contains a '%s' string so that the split name
      can be inserted.
    reader: The TensorFlow reader type.

  Returns:
    A `Dataset` namedtuple.

  Raises:
    ValueError: if `split_name` is not a valid train/test split.
  """
  if split_name not in _SPLITS_TO_SIZES:
    raise ValueError('split name %s was not recognized.' % split_name)

  if not file_pattern:
    file_pattern = _FILE_PATTERN
  file_pattern = os.path.join(dataset_dir, file_pattern % split_name)

  # Allowing None in the signature so that dataset_factory can use the default.
  if reader is None:
    reader = tf.TFRecordReader

  keys_to_features = {
      'image/encoded':
          tf.FixedLenFeature((), tf.string, default_value=''),
      'image/format':
          tf.FixedLenFeature((), tf.string, default_value='jpeg'),
      'image/class/label':
          tf.FixedLenFeature([], dtype=tf.int64, default_value=-1),
      'image/object/bbox/xmin':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/ymin':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/xmax':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/ymax':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/class/label':
          tf.VarLenFeature(dtype=tf.int64),
  }

  items_to_handlers = {
      'image':
          slim.tfexample_decoder.Image('image/encoded', 'image/format'),
      'label':
          slim.tfexample_decoder.Tensor('image/class/label'),
      'object/bbox':
          slim.tfexample_decoder.BoundingBox(['ymin', 'xmin', 'ymax', 'xmax'],
                                             'image/object/bbox/'),
      'object/label':
          slim.tfexample_decoder.Tensor('image/object/class/label'),
  }

  decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features,
                                                    items_to_handlers)

  labels_to_names = None
  labels_file = os.path.join(dataset_dir, LABELS_FILENAME)
  if tf.gfile.Exists(labels_file):
    labels_to_names = dataset_utils.read_label_file(dataset_dir)

  return slim.dataset.Dataset(
      data_sources=file_pattern,
      reader=reader,
      decoder=decoder,
      num_samples=_SPLITS_TO_SIZES[split_name],
      items_to_descriptions=_ITEMS_TO_DESCRIPTIONS,
      num_classes=_NUM_CLASSES,
      labels_to_names=labels_to_names)