# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides data for Visual WakeWords Dataset with images+labels. Visual WakeWords Dataset derives from the COCO dataset to design tiny models classifying two classes, such as person/not-person. The COCO annotations are filtered to two classes: person and not-person (or another user-defined category). Bounding boxes for small objects with area less than 5% of the image area are filtered out. See build_visualwakewords_data.py which generates the Visual WakeWords dataset annotations from the raw COCO dataset and converts them to TFRecord. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow as tf from datasets import dataset_utils slim = tf.contrib.slim _FILE_PATTERN = '%s.record-*' _SPLITS_TO_SIZES = { 'train': 82783, 'validation': 40504, } _ITEMS_TO_DESCRIPTIONS = { 'image': 'A color image of varying height and width.', 'label': 'The label id of the image, an integer in {0, 1}', 'object/bbox': 'A list of bounding boxes.', 'object/label': 'A list of labels, all objects belong to the same class.', } _NUM_CLASSES = 2 # labels file LABELS_FILENAME = 'labels.txt' def get_split(split_name, dataset_dir, file_pattern=None, reader=None): """Gets a dataset tuple with instructions for reading ImageNet. Args: split_name: A train/test split name. dataset_dir: The base directory of the dataset sources. file_pattern: The file pattern to use when matching the dataset sources. It is assumed that the pattern contains a '%s' string so that the split name can be inserted. reader: The TensorFlow reader type. Returns: A `Dataset` namedtuple. Raises: ValueError: if `split_name` is not a valid train/test split. """ if split_name not in _SPLITS_TO_SIZES: raise ValueError('split name %s was not recognized.' % split_name) if not file_pattern: file_pattern = _FILE_PATTERN file_pattern = os.path.join(dataset_dir, file_pattern % split_name) # Allowing None in the signature so that dataset_factory can use the default. if reader is None: reader = tf.TFRecordReader keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'), 'image/class/label': tf.FixedLenFeature([], dtype=tf.int64, default_value=-1), 'image/object/bbox/xmin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymin': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/xmax': tf.VarLenFeature(dtype=tf.float32), 'image/object/bbox/ymax': tf.VarLenFeature(dtype=tf.float32), 'image/object/class/label': tf.VarLenFeature(dtype=tf.int64), } items_to_handlers = { 'image': slim.tfexample_decoder.Image('image/encoded', 'image/format'), 'label': slim.tfexample_decoder.Tensor('image/class/label'), 'object/bbox': slim.tfexample_decoder.BoundingBox(['ymin', 'xmin', 'ymax', 'xmax'], 'image/object/bbox/'), 'object/label': slim.tfexample_decoder.Tensor('image/object/class/label'), } decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) labels_to_names = None labels_file = os.path.join(dataset_dir, LABELS_FILENAME) if tf.gfile.Exists(labels_file): labels_to_names = dataset_utils.read_label_file(dataset_dir) return slim.dataset.Dataset( data_sources=file_pattern, reader=reader, decoder=decoder, num_samples=_SPLITS_TO_SIZES[split_name], items_to_descriptions=_ITEMS_TO_DESCRIPTIONS, num_classes=_NUM_CLASSES, labels_to_names=labels_to_names)