resnet_model.py 19 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Contains definitions for Residual Networks.
16

17
Residual networks ('v1' ResNets) were originally proposed in:
18
19
20
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Deep Residual Learning for Image Recognition. arXiv:1512.03385

21
The full preactivation 'v2' ResNet variant was introduced by:
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Identity Mappings in Deep Residual Networks. arXiv: 1603.05027

The key difference of the full preactivation 'v2' variant compared to the
'v1' variant in [1] is the use of batch normalization before every weight layer
rather than after.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf

_BATCH_NORM_DECAY = 0.997
_BATCH_NORM_EPSILON = 1e-5
38
39
DEFAULT_VERSION = 2

40

Karmel Allison's avatar
Karmel Allison committed
41
################################################################################
42
# Convenience functions for building the ResNet model.
Karmel Allison's avatar
Karmel Allison committed
43
################################################################################
44
45
def batch_norm(inputs, training, data_format):
  """Performs a batch normalization using a standard set of parameters."""
46
47
  # We set fused=True for a significant performance boost. See
  # https://www.tensorflow.org/performance/performance_guide#common_fused_ops
48
  return tf.layers.batch_normalization(
49
50
      inputs=inputs, axis=1 if data_format == 'channels_first' else 3,
      momentum=_BATCH_NORM_DECAY, epsilon=_BATCH_NORM_EPSILON, center=True,
51
      scale=True, training=training, fused=True)
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81


def fixed_padding(inputs, kernel_size, data_format):
  """Pads the input along the spatial dimensions independently of input size.

  Args:
    inputs: A tensor of size [batch, channels, height_in, width_in] or
      [batch, height_in, width_in, channels] depending on data_format.
    kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
                 Should be a positive integer.
    data_format: The input format ('channels_last' or 'channels_first').

  Returns:
    A tensor with the same format as the input with the data either intact
    (if kernel_size == 1) or padded (if kernel_size > 1).
  """
  pad_total = kernel_size - 1
  pad_beg = pad_total // 2
  pad_end = pad_total - pad_beg

  if data_format == 'channels_first':
    padded_inputs = tf.pad(inputs, [[0, 0], [0, 0],
                                    [pad_beg, pad_end], [pad_beg, pad_end]])
  else:
    padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
                                    [pad_beg, pad_end], [0, 0]])
  return padded_inputs


def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format):
82
83
84
  """Strided 2-D convolution with explicit padding."""
  # The padding is consistent and is based only on `kernel_size`, not on the
  # dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone).
85
86
87
88
89
90
91
92
93
94
  if strides > 1:
    inputs = fixed_padding(inputs, kernel_size, data_format)

  return tf.layers.conv2d(
      inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides,
      padding=('SAME' if strides == 1 else 'VALID'), use_bias=False,
      kernel_initializer=tf.variance_scaling_initializer(),
      data_format=data_format)


95
96
97
98
################################################################################
# ResNet block definitions.
################################################################################
def _building_block_v1(inputs, filters, training, projection_shortcut, strides,
99
                       data_format):
Karmel Allison's avatar
Karmel Allison committed
100
101
  """A single block for ResNet v1, without a bottleneck.

102
103
104
105
  Convolution then batch normalization then ReLU as described by:
    Deep Residual Learning for Image Recognition
    https://arxiv.org/pdf/1512.03385.pdf
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Dec 2015.
106
107
108
109
110

  Args:
    inputs: A tensor of size [batch, channels, height_in, width_in] or
      [batch, height_in, width_in, channels] depending on data_format.
    filters: The number of filters for the convolutions.
111
    training: A Boolean for whether the model is in training or inference
112
      mode. Needed for batch normalization.
113
114
    projection_shortcut: The function to use for projection shortcuts
      (typically a 1x1 convolution when downsampling the input).
115
116
117
118
119
    strides: The block's stride. If greater than 1, this block will ultimately
      downsample the input.
    data_format: The input format ('channels_last' or 'channels_first').

  Returns:
Karmel Allison's avatar
Karmel Allison committed
120
    The output tensor of the block; shape should match inputs.
121
122
123
124
125
  """
  shortcut = inputs

  if projection_shortcut is not None:
    shortcut = projection_shortcut(inputs)
126
127
    shortcut = batch_norm(inputs=shortcut, training=training,
                          data_format=data_format)
128
129
130
131

  inputs = conv2d_fixed_padding(
      inputs=inputs, filters=filters, kernel_size=3, strides=strides,
      data_format=data_format)
132
133
  inputs = batch_norm(inputs, training, data_format)
  inputs = tf.nn.relu(inputs)
134
135
136
137

  inputs = conv2d_fixed_padding(
      inputs=inputs, filters=filters, kernel_size=3, strides=1,
      data_format=data_format)
138
139
140
  inputs = batch_norm(inputs, training, data_format)
  inputs += shortcut
  inputs = tf.nn.relu(inputs)
141

142
  return inputs
143
144


145
def _building_block_v2(inputs, filters, training, projection_shortcut, strides,
146
                       data_format):
Karmel Allison's avatar
Karmel Allison committed
147
148
  """A single block for ResNet v2, without a bottleneck.

149
150
151
152
  Batch normalization then ReLu then convolution as described by:
    Identity Mappings in Deep Residual Networks
    https://arxiv.org/pdf/1603.05027.pdf
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Jul 2016.
153
154
155
156

  Args:
    inputs: A tensor of size [batch, channels, height_in, width_in] or
      [batch, height_in, width_in, channels] depending on data_format.
157
    filters: The number of filters for the convolutions.
158
    training: A Boolean for whether the model is in training or inference
159
      mode. Needed for batch normalization.
160
161
    projection_shortcut: The function to use for projection shortcuts
      (typically a 1x1 convolution when downsampling the input).
162
163
164
165
166
    strides: The block's stride. If greater than 1, this block will ultimately
      downsample the input.
    data_format: The input format ('channels_last' or 'channels_first').

  Returns:
Karmel Allison's avatar
Karmel Allison committed
167
    The output tensor of the block; shape should match inputs.
168
169
  """
  shortcut = inputs
170
171
  inputs = batch_norm(inputs, training, data_format)
  inputs = tf.nn.relu(inputs)
172
173
174
175
176
177

  # The projection shortcut should come after the first batch norm and ReLU
  # since it performs a 1x1 convolution.
  if projection_shortcut is not None:
    shortcut = projection_shortcut(inputs)

178
179
180
181
182
183
184
185
186
187
188
189
190
191
  inputs = conv2d_fixed_padding(
      inputs=inputs, filters=filters, kernel_size=3, strides=strides,
      data_format=data_format)

  inputs = batch_norm(inputs, training, data_format)
  inputs = tf.nn.relu(inputs)
  inputs = conv2d_fixed_padding(
      inputs=inputs, filters=filters, kernel_size=3, strides=1,
      data_format=data_format)

  return inputs + shortcut


def _bottleneck_block_v1(inputs, filters, training, projection_shortcut,
192
                         strides, data_format):
Karmel Allison's avatar
Karmel Allison committed
193
194
  """A single block for ResNet v1, with a bottleneck.

195
196
197
198
199
200
  Similar to _building_block_v1(), except using the "bottleneck" blocks
  described in:
    Convolution then batch normalization then ReLU as described by:
      Deep Residual Learning for Image Recognition
      https://arxiv.org/pdf/1512.03385.pdf
      by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Dec 2015.
Karmel Allison's avatar
Karmel Allison committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

  Args:
    inputs: A tensor of size [batch, channels, height_in, width_in] or
      [batch, height_in, width_in, channels] depending on data_format.
    filters: The number of filters for the convolutions.
    training: A Boolean for whether the model is in training or inference
      mode. Needed for batch normalization.
    projection_shortcut: The function to use for projection shortcuts
      (typically a 1x1 convolution when downsampling the input).
    strides: The block's stride. If greater than 1, this block will ultimately
      downsample the input.
    data_format: The input format ('channels_last' or 'channels_first').

  Returns:
    The output tensor of the block; shape should match inputs.
216
217
218
219
220
221
222
223
  """
  shortcut = inputs

  if projection_shortcut is not None:
    shortcut = projection_shortcut(inputs)
    shortcut = batch_norm(inputs=shortcut, training=training,
                          data_format=data_format)

224
225
226
  inputs = conv2d_fixed_padding(
      inputs=inputs, filters=filters, kernel_size=1, strides=1,
      data_format=data_format)
227
228
  inputs = batch_norm(inputs, training, data_format)
  inputs = tf.nn.relu(inputs)
229
230
231
232

  inputs = conv2d_fixed_padding(
      inputs=inputs, filters=filters, kernel_size=3, strides=strides,
      data_format=data_format)
233
234
235
236
237
238
239
240
241
242
243
244
245
246
  inputs = batch_norm(inputs, training, data_format)
  inputs = tf.nn.relu(inputs)

  inputs = conv2d_fixed_padding(
      inputs=inputs, filters=4 * filters, kernel_size=1, strides=1,
      data_format=data_format)
  inputs = batch_norm(inputs, training, data_format)
  inputs += shortcut
  inputs = tf.nn.relu(inputs)

  return inputs


def _bottleneck_block_v2(inputs, filters, training, projection_shortcut,
247
                         strides, data_format):
Karmel Allison's avatar
Karmel Allison committed
248
249
  """A single block for ResNet v2, without a bottleneck.

250
251
252
253
254
255
256
  Similar to _building_block_v2(), except using the "bottleneck" blocks
  described in:
    Convolution then batch normalization then ReLU as described by:
      Deep Residual Learning for Image Recognition
      https://arxiv.org/pdf/1512.03385.pdf
      by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Dec 2015.

Karmel Allison's avatar
Karmel Allison committed
257
  Adapted to the ordering conventions of:
258
259
260
261
    Batch normalization then ReLu then convolution as described by:
      Identity Mappings in Deep Residual Networks
      https://arxiv.org/pdf/1603.05027.pdf
      by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Jul 2016.
Karmel Allison's avatar
Karmel Allison committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

  Args:
    inputs: A tensor of size [batch, channels, height_in, width_in] or
      [batch, height_in, width_in, channels] depending on data_format.
    filters: The number of filters for the convolutions.
    training: A Boolean for whether the model is in training or inference
      mode. Needed for batch normalization.
    projection_shortcut: The function to use for projection shortcuts
      (typically a 1x1 convolution when downsampling the input).
    strides: The block's stride. If greater than 1, this block will ultimately
      downsample the input.
    data_format: The input format ('channels_last' or 'channels_first').

  Returns:
    The output tensor of the block; shape should match inputs.
277
278
279
280
281
282
283
284
285
  """
  shortcut = inputs
  inputs = batch_norm(inputs, training, data_format)
  inputs = tf.nn.relu(inputs)

  # The projection shortcut should come after the first batch norm and ReLU
  # since it performs a 1x1 convolution.
  if projection_shortcut is not None:
    shortcut = projection_shortcut(inputs)
286

287
288
289
290
291
292
293
294
295
296
297
298
  inputs = conv2d_fixed_padding(
      inputs=inputs, filters=filters, kernel_size=1, strides=1,
      data_format=data_format)

  inputs = batch_norm(inputs, training, data_format)
  inputs = tf.nn.relu(inputs)
  inputs = conv2d_fixed_padding(
      inputs=inputs, filters=filters, kernel_size=3, strides=strides,
      data_format=data_format)

  inputs = batch_norm(inputs, training, data_format)
  inputs = tf.nn.relu(inputs)
299
300
301
302
303
304
305
  inputs = conv2d_fixed_padding(
      inputs=inputs, filters=4 * filters, kernel_size=1, strides=1,
      data_format=data_format)

  return inputs + shortcut


306
307
def block_layer(inputs, filters, bottleneck, block_fn, blocks, strides,
                training, name, data_format):
308
309
310
311
312
313
  """Creates one layer of blocks for the ResNet model.

  Args:
    inputs: A tensor of size [batch, channels, height_in, width_in] or
      [batch, height_in, width_in, channels] depending on data_format.
    filters: The number of filters for the first convolution of the layer.
314
    bottleneck: Is the block created a bottleneck block.
315
316
317
318
319
    block_fn: The block to use within the model, either `building_block` or
      `bottleneck_block`.
    blocks: The number of blocks contained in the layer.
    strides: The stride to use for the first convolution of the layer. If
      greater than 1, this layer will ultimately downsample the input.
320
    training: Either True or False, whether we are currently training the
321
322
323
324
325
326
327
      model. Needed for batch norm.
    name: A string name for the tensor output of the block layer.
    data_format: The input format ('channels_last' or 'channels_first').

  Returns:
    The output tensor of the block layer.
  """
328

329
  # Bottleneck blocks end with 4x the number of filters as they start with
330
  filters_out = filters * 4 if bottleneck else filters
331
332
333
334
335
336
337

  def projection_shortcut(inputs):
    return conv2d_fixed_padding(
        inputs=inputs, filters=filters_out, kernel_size=1, strides=strides,
        data_format=data_format)

  # Only the first block per block_layer uses projection_shortcut and strides
338
  inputs = block_fn(inputs, filters, training, projection_shortcut, strides,
339
340
                    data_format)

341
  for _ in range(1, blocks):
342
    inputs = block_fn(inputs, filters, training, None, 1, data_format)
343
344
345
346

  return tf.identity(inputs, name)


347
class Model(object):
Karmel Allison's avatar
Karmel Allison committed
348
  """Base class for building the Resnet Model."""
349

350
351
  def __init__(self, resnet_size, bottleneck, num_classes, num_filters,
               kernel_size,
352
               conv_stride, first_pool_size, first_pool_stride,
353
354
               second_pool_size, second_pool_stride, block_sizes, block_strides,
               final_size, version=DEFAULT_VERSION, data_format=None):
355
356
357
358
    """Creates a model for classifying an image.

    Args:
      resnet_size: A single integer for the size of the ResNet model.
359
      bottleneck: Use regular blocks or bottleneck blocks.
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
      num_classes: The number of classes used as labels.
      num_filters: The number of filters to use for the first block layer
        of the model. This number is then doubled for each subsequent block
        layer.
      kernel_size: The kernel size to use for convolution.
      conv_stride: stride size for the initial convolutional layer
      first_pool_size: Pool size to be used for the first pooling layer.
        If none, the first pooling layer is skipped.
      first_pool_stride: stride size for the first pooling layer. Not used
        if first_pool_size is None.
      second_pool_size: Pool size to be used for the second pooling layer.
      second_pool_stride: stride size for the final pooling layer
      block_sizes: A list containing n values, where n is the number of sets of
        block layers desired. Each value should be the number of blocks in the
        i-th set.
      block_strides: List of integers representing the desired stride size for
        each of the sets of block layers. Should be same length as block_sizes.
      final_size: The expected size of the model after the second pooling.
378
379
      version: Integer representing which version of the ResNet network to use.
        See README for details. Valid values: [1, 2]
380
381
      data_format: Input format ('channels_last', 'channels_first', or None).
        If set to None, the format is dependent on whether a GPU is available.
Karmel Allison's avatar
Karmel Allison committed
382
383
384

    Raises:
      ValueError: if invalid version is selected.
385
386
387
388
389
390
391
    """
    self.resnet_size = resnet_size

    if not data_format:
      data_format = (
          'channels_first' if tf.test.is_built_with_cuda() else 'channels_last')

392
393
394
    self.resnet_version = version
    if version not in (1, 2):
      raise ValueError(
Karmel Allison's avatar
Karmel Allison committed
395
          'Resnet version should be 1 or 2. See README for citations.')
396
397
398
399
400
401
402
403
404
405
406
407
408

    self.bottleneck = bottleneck
    if bottleneck:
      if version == 1:
        self.block_fn = _bottleneck_block_v1
      else:
        self.block_fn = _bottleneck_block_v2
    else:
      if version == 1:
        self.block_fn = _building_block_v1
      else:
        self.block_fn = _building_block_v2

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    self.data_format = data_format
    self.num_classes = num_classes
    self.num_filters = num_filters
    self.kernel_size = kernel_size
    self.conv_stride = conv_stride
    self.first_pool_size = first_pool_size
    self.first_pool_stride = first_pool_stride
    self.second_pool_size = second_pool_size
    self.second_pool_stride = second_pool_stride
    self.block_sizes = block_sizes
    self.block_strides = block_strides
    self.final_size = final_size

  def __call__(self, inputs, training):
    """Add operations to classify a batch of input images.

    Args:
      inputs: A Tensor representing a batch of input images.
      training: A boolean. Set to True to add operations required only when
        training the classifier.

    Returns:
      A logits Tensor with shape [<batch_size>, self.num_classes].
    """

    if self.data_format == 'channels_first':
435
436
      # Convert the inputs from channels_last (NHWC) to channels_first (NCHW).
      # This provides a large performance boost on GPU. See
437
      # https://www.tensorflow.org/performance/performance_guide#data_formats
438
439
440
      inputs = tf.transpose(inputs, [0, 3, 1, 2])

    inputs = conv2d_fixed_padding(
441
442
        inputs=inputs, filters=self.num_filters, kernel_size=self.kernel_size,
        strides=self.conv_stride, data_format=self.data_format)
443
444
    inputs = tf.identity(inputs, 'initial_conv')

445
446
447
448
449
450
451
452
453
454
    if self.first_pool_size:
      inputs = tf.layers.max_pooling2d(
          inputs=inputs, pool_size=self.first_pool_size,
          strides=self.first_pool_stride, padding='SAME',
          data_format=self.data_format)
      inputs = tf.identity(inputs, 'initial_max_pool')

    for i, num_blocks in enumerate(self.block_sizes):
      num_filters = self.num_filters * (2**i)
      inputs = block_layer(
455
456
457
458
          inputs=inputs, filters=num_filters, bottleneck=self.bottleneck,
          block_fn=self.block_fn, blocks=num_blocks,
          strides=self.block_strides[i], training=training,
          name='block_layer{}'.format(i + 1), data_format=self.data_format)
459

460
461
    inputs = batch_norm(inputs, training, self.data_format)
    inputs = tf.nn.relu(inputs)
462
463
464
465
466
467
468
469
470

    # The current top layer has shape
    # `batch_size x pool_size x pool_size x final_size`.
    # ResNet does an Average Pooling layer over pool_size,
    # but that is the same as doing a reduce_mean. We do a reduce_mean
    # here because it performs better than AveragePooling2D.
    axes = [2, 3] if self.data_format == 'channels_first' else [1, 2]
    inputs = tf.reduce_mean(inputs, axes, keepdims=True)
    inputs = tf.identity(inputs, 'final_reduce_mean')
471

472
473
    inputs = tf.reshape(inputs, [-1, self.final_size])
    inputs = tf.layers.dense(inputs=inputs, units=self.num_classes)
474
    inputs = tf.identity(inputs, 'final_dense')
475

476
    return inputs