neumf_model.py 17.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Defines NeuMF model for NCF framework.

Some abbreviations used in the code base:
NeuMF: Neural Matrix Factorization
NCF: Neural Collaborative Filtering
GMF: Generalized Matrix Factorization
MLP: Multi-Layer Perceptron

GMF applies a linear kernel to model the latent feature interactions, and MLP
uses a nonlinear kernel to learn the interaction function from data. NeuMF model
is a fused model of GMF and MLP to better model the complex user-item
interactions, and unifies the strengths of linearity of MF and non-linearity of
MLP for modeling the user-item latent structures.

In NeuMF model, it allows GMF and MLP to learn separate embeddings, and combine
the two models by concatenating their last hidden layer.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

36
37
import sys

38
39
40
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf

Shawn Wang's avatar
Shawn Wang committed
41
from official.recommendation import constants as rconst
42
from official.recommendation import movielens
Shining Sun's avatar
Shining Sun committed
43
from official.recommendation import ncf_common
Shawn Wang's avatar
Shawn Wang committed
44
from official.recommendation import stat_utils
45
from official.utils.logs import mlperf_helper
46
47


48
def sparse_to_dense_grads(grads_and_vars):
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
  """Convert sparse gradients to dense gradients.

  All sparse gradients, which are represented as instances of tf.IndexedSlices,
  are converted to dense Tensors. Dense gradients, which are represents as
  Tensors, are unchanged.

  The purpose of this conversion is that for small embeddings, which are used by
  this model, applying dense gradients with the AdamOptimizer is faster than
  applying sparse gradients.

  Args
    grads_and_vars: A list of (gradient, variable) tuples. Each gradient can
      be a Tensor or an IndexedSlices. Tensors are unchanged, and IndexedSlices
      are converted to dense Tensors.
  Returns:
    The same list of (gradient, variable) as `grads_and_vars`, except each
    IndexedSlices gradient is converted to a Tensor.
  """

  # Calling convert_to_tensor changes IndexedSlices into Tensors, and leaves
  # Tensors unchanged.
  return [(tf.convert_to_tensor(g), v) for g, v in grads_and_vars]


73
74
def neumf_model_fn(features, labels, mode, params):
  """Model Function for NeuMF estimator."""
75
76
77
  if params.get("use_seed"):
    tf.set_random_seed(stat_utils.random_int32())

78
  users = features[movielens.USER_COLUMN]
79
  items = features[movielens.ITEM_COLUMN]
80

Shining Sun's avatar
Shining Sun committed
81
82
83
  user_input = tf.keras.layers.Input(tensor=users)
  item_input = tf.keras.layers.Input(tensor=items)
  logits = construct_model(user_input, item_input, params).output
84

85
  # Softmax with the first column of zeros is equivalent to sigmoid.
Shining Sun's avatar
Shining Sun committed
86
  softmax_logits = ncf_common.convert_to_softmax_logits(logits)
87

88
  if mode == tf.estimator.ModeKeys.EVAL:
89
    duplicate_mask = tf.cast(features[rconst.DUPLICATE_MASK], tf.float32)
Shining Sun's avatar
Shining Sun committed
90
91
92
93
94
    return _get_estimator_spec_with_metrics(
        logits,
        softmax_logits,
        duplicate_mask,
        params["num_neg"],
Reed's avatar
Reed committed
95
        params["match_mlperf"],
96
        use_tpu_spec=params["use_tpu"])
97

98
99
  elif mode == tf.estimator.ModeKeys.TRAIN:
    labels = tf.cast(labels, tf.int32)
100
    valid_pt_mask = features[rconst.VALID_POINT_MASK]
101
102
103
104
105
106
107
108
109
110
111

    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.OPT_NAME, value="adam")
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.OPT_LR,
                            value=params["learning_rate"])
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.OPT_HP_ADAM_BETA1,
                            value=params["beta1"])
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.OPT_HP_ADAM_BETA2,
                            value=params["beta2"])
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.OPT_HP_ADAM_EPSILON,
                            value=params["epsilon"])

ayushmankumar7's avatar
ayushmankumar7 committed
112
    optimizer = tf.keras.optimizers.Adam(
113
114
115
116
117
        learning_rate=params["learning_rate"],
        beta1=params["beta1"],
        beta2=params["beta2"],
        epsilon=params["epsilon"])
    if params["use_tpu"]:
118
      optimizer = tf.compat.v1.tpu.CrossShardOptimizer(optimizer)
119

120
121
    mlperf_helper.ncf_print(key=mlperf_helper.TAGS.MODEL_HP_LOSS_FN,
                            value=mlperf_helper.TAGS.BCE)
Shining Sun's avatar
Shining Sun committed
122

123
    loss = tf.compat.v1.losses.sparse_softmax_cross_entropy(
124
        labels=labels,
125
126
        logits=softmax_logits,
        weights=tf.cast(valid_pt_mask, tf.float32)
127
128
    )

129
130
131
    # This tensor is used by logging hooks.
    tf.identity(loss, name="cross_entropy")

132
133
    global_step = tf.compat.v1.train.get_global_step()
    tvars = tf.compat.v1.trainable_variables()
134
135
    gradients = optimizer.compute_gradients(
        loss, tvars, colocate_gradients_with_ops=True)
136
    gradients = sparse_to_dense_grads(gradients)
137
138
    minimize_op = optimizer.apply_gradients(
        gradients, global_step=global_step, name="train")
139
    update_ops = tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS)
140
141
142
143
144
145
146
147
    train_op = tf.group(minimize_op, update_ops)

    return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)

  else:
    raise NotImplementedError


Shining Sun's avatar
Shining Sun committed
148
149
150
151
def _strip_first_and_last_dimension(x, batch_size):
  return tf.reshape(x[0, :], (batch_size,))


152
def construct_model(user_input, item_input, params):
153
  # type: (tf.Tensor, tf.Tensor, dict) -> tf.keras.Model
154
155
156
  """Initialize NeuMF model.

  Args:
Shining Sun's avatar
Shining Sun committed
157
158
    user_input: keras input layer for users
    item_input: keras input layer for items
159
160
161
    params: Dict of hyperparameters.
  Raises:
    ValueError: if the first model layer is not even.
162
  Returns:
163
    model:  a keras Model for computing the logits
164
165
166
167
168
169
170
171
172
173
174
  """
  num_users = params["num_users"]
  num_items = params["num_items"]

  model_layers = params["model_layers"]

  mf_regularization = params["mf_regularization"]
  mlp_reg_layers = params["mlp_reg_layers"]

  mf_dim = params["mf_dim"]

175
176
177
178
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.MODEL_HP_MF_DIM, value=mf_dim)
  mlperf_helper.ncf_print(key=mlperf_helper.TAGS.MODEL_HP_MLP_LAYER_SIZES,
                          value=model_layers)

179
180
181
  if model_layers[0] % 2 != 0:
    raise ValueError("The first layer size should be multiple of 2!")

182
183
184
  # Initializer for embedding layers
  embedding_initializer = "glorot_uniform"

185
186
187
  def mf_slice_fn(x):
    x = tf.squeeze(x, [1])
    return x[:, :mf_dim]
Shining Sun's avatar
Shining Sun committed
188

189
190
191
  def mlp_slice_fn(x):
    x = tf.squeeze(x, [1])
    return x[:, mf_dim:]
Shining Sun's avatar
Shining Sun committed
192

193
194
195
  # It turns out to be significantly more effecient to store the MF and MLP
  # embedding portions in the same table, and then slice as needed.
  embedding_user = tf.keras.layers.Embedding(
196
197
      num_users,
      mf_dim + model_layers[0] // 2,
198
199
      embeddings_initializer=embedding_initializer,
      embeddings_regularizer=tf.keras.regularizers.l2(mf_regularization),
200
201
202
      input_length=1,
      name="embedding_user")(
          user_input)
203
204

  embedding_item = tf.keras.layers.Embedding(
205
206
      num_items,
      mf_dim + model_layers[0] // 2,
207
208
      embeddings_initializer=embedding_initializer,
      embeddings_regularizer=tf.keras.regularizers.l2(mf_regularization),
209
210
211
      input_length=1,
      name="embedding_item")(
          item_input)
212
213
214
215
216
217
218
219
220
221
222
223

  # GMF part
  mf_user_latent = tf.keras.layers.Lambda(
      mf_slice_fn, name="embedding_user_mf")(embedding_user)
  mf_item_latent = tf.keras.layers.Lambda(
      mf_slice_fn, name="embedding_item_mf")(embedding_item)

  # MLP part
  mlp_user_latent = tf.keras.layers.Lambda(
      mlp_slice_fn, name="embedding_user_mlp")(embedding_user)
  mlp_item_latent = tf.keras.layers.Lambda(
      mlp_slice_fn, name="embedding_item_mlp")(embedding_item)
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

  # Element-wise multiply
  mf_vector = tf.keras.layers.multiply([mf_user_latent, mf_item_latent])

  # Concatenation of two latent features
  mlp_vector = tf.keras.layers.concatenate([mlp_user_latent, mlp_item_latent])

  num_layer = len(model_layers)  # Number of layers in the MLP
  for layer in xrange(1, num_layer):
    model_layer = tf.keras.layers.Dense(
        model_layers[layer],
        kernel_regularizer=tf.keras.regularizers.l2(mlp_reg_layers[layer]),
        activation="relu")
    mlp_vector = model_layer(mlp_vector)

  # Concatenate GMF and MLP parts
  predict_vector = tf.keras.layers.concatenate([mf_vector, mlp_vector])

  # Final prediction layer
  logits = tf.keras.layers.Dense(
      1, activation=None, kernel_initializer="lecun_uniform",
      name=movielens.RATING_COLUMN)(predict_vector)

  # Print model topology.
248
249
  model = tf.keras.models.Model([user_input, item_input], logits)
  model.summary()
250
251
  sys.stdout.flush()

252
  return model
253
254


Shining Sun's avatar
Shining Sun committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
def _get_estimator_spec_with_metrics(logits,              # type: tf.Tensor
                                     softmax_logits,      # type: tf.Tensor
                                     duplicate_mask,      # type: tf.Tensor
                                     num_training_neg,    # type: int
                                     match_mlperf=False,  # type: bool
                                     use_tpu_spec=False   # type: bool
                                    ):
  """Returns a EstimatorSpec that includes the metrics."""
  cross_entropy, \
  metric_fn, \
  in_top_k, \
  ndcg, \
  metric_weights = compute_eval_loss_and_metrics_helper(
      logits,
      softmax_logits,
      duplicate_mask,
      num_training_neg,
272
      match_mlperf)
Shining Sun's avatar
Shining Sun committed
273
274

  if use_tpu_spec:
275
    return tf.estimator.tpu.TPUEstimatorSpec(
Shining Sun's avatar
Shining Sun committed
276
277
278
279
280
281
282
283
284
285
286
        mode=tf.estimator.ModeKeys.EVAL,
        loss=cross_entropy,
        eval_metrics=(metric_fn, [in_top_k, ndcg, metric_weights]))

  return tf.estimator.EstimatorSpec(
      mode=tf.estimator.ModeKeys.EVAL,
      loss=cross_entropy,
      eval_metric_ops=metric_fn(in_top_k, ndcg, metric_weights)
  )


287
288
289
290
291
292
293
def compute_eval_loss_and_metrics_helper(
    logits,  # type: tf.Tensor
    softmax_logits,  # type: tf.Tensor
    duplicate_mask,  # type: tf.Tensor
    num_training_neg,  # type: int
    match_mlperf=False  # type: bool
):
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
  """Model evaluation with HR and NDCG metrics.

  The evaluation protocol is to rank the test interacted item (truth items)
  among the randomly chosen 999 items that are not interacted by the user.
  The performance of the ranked list is judged by Hit Ratio (HR) and Normalized
  Discounted Cumulative Gain (NDCG).

  For evaluation, the ranked list is truncated at 10 for both metrics. As such,
  the HR intuitively measures whether the test item is present on the top-10
  list, and the NDCG accounts for the position of the hit by assigning higher
  scores to hits at top ranks. Both metrics are calculated for each test user,
  and the average scores are reported.

  If `match_mlperf` is True, then the HR and NDCG computations are done in a
  slightly unusual way to match the MLPerf reference implementation.
  Specifically, if the evaluation negatives contain duplicate items, it will be
  treated as if the item only appeared once. Effectively, for duplicate items in
  a row, the predicted score for all but one of the items will be set to
  -infinity

  For example, suppose we have that following inputs:
  logits_by_user:     [[ 2,  3,  3],
                       [ 5,  4,  4]]

  items_by_user:     [[10, 20, 20],
                      [30, 40, 40]]

  # Note: items_by_user is not explicitly present. Instead the relevant \
          information is contained within `duplicate_mask`

  top_k: 2

  Then with match_mlperf=True, the HR would be 2/2 = 1.0. With
  match_mlperf=False, the HR would be 1/2 = 0.5. This is because each user has
  predicted scores for only 2 unique items: 10 and 20 for the first user, and 30
  and 40 for the second. Therefore, with match_mlperf=True, it's guaranteed the
  first item's score is in the top 2. With match_mlperf=False, this function
  would compute the first user's first item is not in the top 2, because item 20
  has a higher score, and item 20 occurs twice.

  Args:
    logits: A tensor containing the predicted logits for each user. The shape
      of logits is (num_users_per_batch * (1 + NUM_EVAL_NEGATIVES),) Logits
337
      for a user are grouped, and the last element of the group is the true
338
339
340
341
342
343
344
345
346
347
348
349
350
      element.

    softmax_logits: The same tensor, but with zeros left-appended.

    duplicate_mask: A vector with the same shape as logits, with a value of 1
      if the item corresponding to the logit at that position has already
      appeared for that user.

    num_training_neg: The number of negatives per positive during training.

    match_mlperf: Use the MLPerf reference convention for computing rank.

  Returns:
Shining Sun's avatar
Shining Sun committed
351
352
353
354
355
    cross_entropy: the loss
    metric_fn: the metrics function
    in_top_k: hit rate metric
    ndcg: ndcg metric
    metric_weights: metric weights
356
  """
357
358
  in_top_k, ndcg, metric_weights, logits_by_user = compute_top_k_and_ndcg(
      logits, duplicate_mask, match_mlperf)
359
360
361

  # Examples are provided by the eval Dataset in a structured format, so eval
  # labels can be reconstructed on the fly.
362
363
364
  eval_labels = tf.reshape(shape=(-1,), tensor=tf.one_hot(
      tf.zeros(shape=(logits_by_user.shape[0],), dtype=tf.int32) +
      rconst.NUM_EVAL_NEGATIVES, logits_by_user.shape[1], dtype=tf.int32))
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

  eval_labels_float = tf.cast(eval_labels, tf.float32)

  # During evaluation, the ratio of negatives to positives is much higher
  # than during training. (Typically 999 to 1 vs. 4 to 1) By adjusting the
  # weights for the negative examples we compute a loss which is consistent with
  # the training data. (And provides apples-to-apples comparison)
  negative_scale_factor = num_training_neg / rconst.NUM_EVAL_NEGATIVES
  example_weights = (
      (eval_labels_float + (1 - eval_labels_float) * negative_scale_factor) *
      (1 + rconst.NUM_EVAL_NEGATIVES) / (1 + num_training_neg))

  # Tile metric weights back to logit dimensions
  expanded_metric_weights = tf.reshape(tf.tile(
      metric_weights[:, tf.newaxis], (1, rconst.NUM_EVAL_NEGATIVES + 1)), (-1,))

  # ignore padded examples
  example_weights *= tf.cast(expanded_metric_weights, tf.float32)

384
  cross_entropy = tf.compat.v1.losses.sparse_softmax_cross_entropy(
385
386
387
388
      logits=softmax_logits, labels=eval_labels, weights=example_weights)

  def metric_fn(top_k_tensor, ndcg_tensor, weight_tensor):
    return {
389
390
391
392
393
394
        rconst.HR_KEY: tf.compat.v1.metrics.mean(top_k_tensor,
                                                 weights=weight_tensor,
                                                 name=rconst.HR_METRIC_NAME),
        rconst.NDCG_KEY: tf.compat.v1.metrics.mean(ndcg_tensor,
                                                   weights=weight_tensor,
                                                   name=rconst.NDCG_METRIC_NAME)
395
396
    }

Shining Sun's avatar
Shining Sun committed
397
  return cross_entropy, metric_fn, in_top_k, ndcg, metric_weights
398
399
400
401
402


def compute_top_k_and_ndcg(logits,              # type: tf.Tensor
                           duplicate_mask,      # type: tf.Tensor
                           match_mlperf=False   # type: bool
Shawn Wang's avatar
Delint.  
Shawn Wang committed
403
                          ):
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
  """Compute inputs of metric calculation.

  Args:
    logits: A tensor containing the predicted logits for each user. The shape
      of logits is (num_users_per_batch * (1 + NUM_EVAL_NEGATIVES),) Logits
      for a user are grouped, and the first element of the group is the true
      element.
    duplicate_mask: A vector with the same shape as logits, with a value of 1
      if the item corresponding to the logit at that position has already
      appeared for that user.
    match_mlperf: Use the MLPerf reference convention for computing rank.

  Returns:
    is_top_k, ndcg and weights, all of which has size (num_users_in_batch,), and
    logits_by_user which has size
    (num_users_in_batch, (rconst.NUM_EVAL_NEGATIVES + 1)).
  """
  logits_by_user = tf.reshape(logits, (-1, rconst.NUM_EVAL_NEGATIVES + 1))
422
423
  duplicate_mask_by_user = tf.cast(
      tf.reshape(duplicate_mask, (-1, rconst.NUM_EVAL_NEGATIVES + 1)),
424
      logits_by_user.dtype)
425
426
427
428
429
430
431
432
433

  if match_mlperf:
    # Set duplicate logits to the min value for that dtype. The MLPerf
    # reference dedupes during evaluation.
    logits_by_user *= (1 - duplicate_mask_by_user)
    logits_by_user += duplicate_mask_by_user * logits_by_user.dtype.min

  # Determine the location of the first element in each row after the elements
  # are sorted.
434
  sort_indices = tf.argsort(
435
436
437
438
439
440
441
      logits_by_user, axis=1, direction="DESCENDING")

  # Use matrix multiplication to extract the position of the true item from the
  # tensor of sorted indices. This approach is chosen because both GPUs and TPUs
  # perform matrix multiplications very quickly. This is similar to np.argwhere.
  # However this is a special case because the target will only appear in
  # sort_indices once.
442
443
  one_hot_position = tf.cast(tf.equal(sort_indices, rconst.NUM_EVAL_NEGATIVES),
                             tf.int32)
444
445
446
447
448
  sparse_positions = tf.multiply(
      one_hot_position, tf.range(logits_by_user.shape[1])[tf.newaxis, :])
  position_vector = tf.reduce_sum(sparse_positions, axis=1)

  in_top_k = tf.cast(tf.less(position_vector, rconst.TOP_K), tf.float32)
449
450
  ndcg = tf.math.log(2.) / tf.math.log(
      tf.cast(position_vector, tf.float32) + 2)
451
452
453
454
455
456
457
  ndcg *= in_top_k

  # If a row is a padded row, all but the first element will be a duplicate.
  metric_weights = tf.not_equal(tf.reduce_sum(duplicate_mask_by_user, axis=1),
                                rconst.NUM_EVAL_NEGATIVES)

  return in_top_k, ndcg, metric_weights, logits_by_user