bert_classifier.py 5.6 KB
Newer Older
Frederick Liu's avatar
Frederick Liu committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Hongkun Yu's avatar
Hongkun Yu committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Frederick Liu's avatar
Frederick Liu committed
14

15
"""BERT cls-token classifier."""
16
# pylint: disable=g-classes-have-attributes
17
import collections
Hongkun Yu's avatar
Hongkun Yu committed
18
import tensorflow as tf
Hongkun Yu's avatar
Hongkun Yu committed
19

Hongkun Yu's avatar
Hongkun Yu committed
20
from official.nlp.modeling import layers
Hongkun Yu's avatar
Hongkun Yu committed
21
22
23
24
25
26
27
28
29
30
31
32


@tf.keras.utils.register_keras_serializable(package='Text')
class BertClassifier(tf.keras.Model):
  """Classifier model based on a BERT-style transformer-based encoder.

  This is an implementation of the network structure surrounding a transformer
  encoder as described in "BERT: Pre-training of Deep Bidirectional Transformers
  for Language Understanding" (https://arxiv.org/abs/1810.04805).

  The BertClassifier allows a user to pass in a transformer stack, and
  instantiates a classification network based on the passed `num_classes`
33
  argument. If `num_classes` is set to 1, a regression network is instantiated.
Hongkun Yu's avatar
Hongkun Yu committed
34

35
36
37
  *Note* that the model is constructed by
  [Keras Functional API](https://keras.io/guides/functional_api/).

38
  Args:
Hongkun Yu's avatar
Hongkun Yu committed
39
40
41
42
43
44
    network: A transformer network. This network should output a sequence output
      and a classification output. Furthermore, it should expose its embedding
      table via a "get_embedding_table" method.
    num_classes: Number of classes to predict from the classification network.
    initializer: The initializer (if any) to use in the classification networks.
      Defaults to a Glorot uniform initializer.
Hongkun Yu's avatar
Hongkun Yu committed
45
    dropout_rate: The dropout probability of the cls head.
Hongkun Yu's avatar
Hongkun Yu committed
46
47
    use_encoder_pooler: Whether to use the pooler layer pre-defined inside the
      encoder.
48
49
    cls_head: (Optional) The layer instance to use for the classifier head.
      It should take in the output from network and produce the final logits.
50
51
      If set, the arguments ('num_classes', 'initializer', 'dropout_rate',
      'use_encoder_pooler') will be ignored.
Hongkun Yu's avatar
Hongkun Yu committed
52
53
54
55
56
57
58
  """

  def __init__(self,
               network,
               num_classes,
               initializer='glorot_uniform',
               dropout_rate=0.1,
Hongkun Yu's avatar
Hongkun Yu committed
59
               use_encoder_pooler=True,
60
               cls_head=None,
Hongkun Yu's avatar
Hongkun Yu committed
61
               **kwargs):
62
63
64
    self.num_classes = num_classes
    self.initializer = initializer
    self.use_encoder_pooler = use_encoder_pooler
Hongkun Yu's avatar
Hongkun Yu committed
65
66
67
68
69
70

    # We want to use the inputs of the passed network as the inputs to this
    # Model. To do this, we need to keep a handle to the network inputs for use
    # when we construct the Model object at the end of init.
    inputs = network.inputs

Hongkun Yu's avatar
Hongkun Yu committed
71
72
73
    if use_encoder_pooler:
      # Because we have a copy of inputs to create this Model object, we can
      # invoke the Network object with its own input tensors to start the Model.
74
75
      outputs = network(inputs)
      if isinstance(outputs, list):
76
        cls_inputs = outputs[1]
77
      else:
78
79
        cls_inputs = outputs['pooled_output']
      cls_inputs = tf.keras.layers.Dropout(rate=dropout_rate)(cls_inputs)
Hongkun Yu's avatar
Hongkun Yu committed
80
    else:
81
82
      outputs = network(inputs)
      if isinstance(outputs, list):
83
        cls_inputs = outputs[0]
84
      else:
85
86
87
88
89
        cls_inputs = outputs['sequence_output']

    if cls_head:
      classifier = cls_head
    else:
90
      classifier = layers.ClassificationHead(
91
          inner_dim=0 if use_encoder_pooler else cls_inputs.shape[-1],
Hongkun Yu's avatar
Hongkun Yu committed
92
93
94
95
          num_classes=num_classes,
          initializer=initializer,
          dropout_rate=dropout_rate,
          name='sentence_prediction')
96
97

    predictions = classifier(cls_inputs)
98
99
100
101
102
103
104
105

    # b/164516224
    # Once we've created the network using the Functional API, we call
    # super().__init__ as though we were invoking the Functional API Model
    # constructor, resulting in this object having all the properties of a model
    # created using the Functional API. Once super().__init__ is called, we
    # can assign attributes to `self` - note that all `self` assignments are
    # below this line.
Hongkun Yu's avatar
Hongkun Yu committed
106
107
    super(BertClassifier, self).__init__(
        inputs=inputs, outputs=predictions, **kwargs)
108
    self._network = network
109
110
    self._cls_head = cls_head

111
    config_dict = self._make_config_dict()
112
113
114
115
116
117
118
119
    # We are storing the config dict as a namedtuple here to ensure checkpoint
    # compatibility with an earlier version of this model which did not track
    # the config dict attribute. TF does not track immutable attrs which
    # do not contain Trackables, so by creating a config namedtuple instead of
    # a dict we avoid tracking it.
    config_cls = collections.namedtuple('Config', config_dict.keys())
    self._config = config_cls(**config_dict)
    self.classifier = classifier
Hongkun Yu's avatar
Hongkun Yu committed
120

Hongkun Yu's avatar
Hongkun Yu committed
121
122
  @property
  def checkpoint_items(self):
Hongkun Yu's avatar
Hongkun Yu committed
123
124
125
126
127
    items = dict(encoder=self._network)
    if hasattr(self.classifier, 'checkpoint_items'):
      for key, item in self.classifier.checkpoint_items.items():
        items['.'.join([self.classifier.name, key])] = item
    return items
Hongkun Yu's avatar
Hongkun Yu committed
128

Hongkun Yu's avatar
Hongkun Yu committed
129
  def get_config(self):
130
    return dict(self._config._asdict())
Hongkun Yu's avatar
Hongkun Yu committed
131
132
133
134

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)
135
136
137
138
139
140
141

  def _make_config_dict(self):
    return {
        'network': self._network,
        'num_classes': self.num_classes,
        'initializer': self.initializer,
        'use_encoder_pooler': self.use_encoder_pooler,
142
        'cls_head': self._cls_head,
143
    }