bert_classifier.py 4.12 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Trainer network for BERT-style models."""
16
# pylint: disable=g-classes-have-attributes
Hongkun Yu's avatar
Hongkun Yu committed
17
18
19
20
21
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

Hongkun Yu's avatar
Hongkun Yu committed
22
import tensorflow as tf
Hongkun Yu's avatar
Hongkun Yu committed
23

Hongkun Yu's avatar
Hongkun Yu committed
24
from official.nlp.modeling import layers
Hongkun Yu's avatar
Hongkun Yu committed
25
26
27
28
29
30
31
32
33
34
35
36
37
from official.nlp.modeling import networks


@tf.keras.utils.register_keras_serializable(package='Text')
class BertClassifier(tf.keras.Model):
  """Classifier model based on a BERT-style transformer-based encoder.

  This is an implementation of the network structure surrounding a transformer
  encoder as described in "BERT: Pre-training of Deep Bidirectional Transformers
  for Language Understanding" (https://arxiv.org/abs/1810.04805).

  The BertClassifier allows a user to pass in a transformer stack, and
  instantiates a classification network based on the passed `num_classes`
38
  argument. If `num_classes` is set to 1, a regression network is instantiated.
Hongkun Yu's avatar
Hongkun Yu committed
39

40
  Arguments:
Hongkun Yu's avatar
Hongkun Yu committed
41
42
43
44
45
46
    network: A transformer network. This network should output a sequence output
      and a classification output. Furthermore, it should expose its embedding
      table via a "get_embedding_table" method.
    num_classes: Number of classes to predict from the classification network.
    initializer: The initializer (if any) to use in the classification networks.
      Defaults to a Glorot uniform initializer.
Hongkun Yu's avatar
Hongkun Yu committed
47
48
49
    dropout_rate: The dropout probability of the cls head.
    use_encoder_pooler: Whether to use the pooler layer pre-defined inside
      the encoder.
Hongkun Yu's avatar
Hongkun Yu committed
50
51
52
53
54
55
56
  """

  def __init__(self,
               network,
               num_classes,
               initializer='glorot_uniform',
               dropout_rate=0.1,
Hongkun Yu's avatar
Hongkun Yu committed
57
               use_encoder_pooler=True,
Hongkun Yu's avatar
Hongkun Yu committed
58
59
               **kwargs):
    self._self_setattr_tracking = False
Hongkun Yu's avatar
Hongkun Yu committed
60
    self._network = network
Hongkun Yu's avatar
Hongkun Yu committed
61
62
63
64
    self._config = {
        'network': network,
        'num_classes': num_classes,
        'initializer': initializer,
Hongkun Yu's avatar
Hongkun Yu committed
65
        'use_encoder_pooler': use_encoder_pooler,
Hongkun Yu's avatar
Hongkun Yu committed
66
67
68
69
70
71
72
    }

    # We want to use the inputs of the passed network as the inputs to this
    # Model. To do this, we need to keep a handle to the network inputs for use
    # when we construct the Model object at the end of init.
    inputs = network.inputs

Hongkun Yu's avatar
Hongkun Yu committed
73
74
75
76
77
    if use_encoder_pooler:
      # Because we have a copy of inputs to create this Model object, we can
      # invoke the Network object with its own input tensors to start the Model.
      _, cls_output = network(inputs)
      cls_output = tf.keras.layers.Dropout(rate=dropout_rate)(cls_output)
Hongkun Yu's avatar
Hongkun Yu committed
78

Hongkun Yu's avatar
Hongkun Yu committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
      self.classifier = networks.Classification(
          input_width=cls_output.shape[-1],
          num_classes=num_classes,
          initializer=initializer,
          output='logits',
          name='sentence_prediction')
      predictions = self.classifier(cls_output)
    else:
      sequence_output, _ = network(inputs)
      self.classifier = layers.ClassificationHead(
          inner_dim=sequence_output.shape[-1],
          num_classes=num_classes,
          initializer=initializer,
          dropout_rate=dropout_rate,
          name='sentence_prediction')
      predictions = self.classifier(sequence_output)
Hongkun Yu's avatar
Hongkun Yu committed
95
96
97
98

    super(BertClassifier, self).__init__(
        inputs=inputs, outputs=predictions, **kwargs)

Hongkun Yu's avatar
Hongkun Yu committed
99
100
101
102
  @property
  def checkpoint_items(self):
    return dict(encoder=self._network)

Hongkun Yu's avatar
Hongkun Yu committed
103
104
105
106
107
108
  def get_config(self):
    return self._config

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)