estimator_cifar_benchmark.py 6.24 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Executes Estimator benchmarks and accuracy tests."""
Shining Sun's avatar
Shining Sun committed
16
17
18

from __future__ import absolute_import
from __future__ import division
19
20
from __future__ import print_function

21
import json
22
import os
Toby Boyd's avatar
Toby Boyd committed
23
import time
24
25
26
27
28
29

from absl import flags
from absl.testing import flagsaver
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.resnet import cifar10_main as cifar_main
30
from official.utils.logs import hooks
31
32


33
class EstimatorCifar10BenchmarkTests(tf.test.Benchmark):
34
35
36
37
  """Benchmarks and accuracy tests for Estimator ResNet56."""

  local_flags = None

38
39
40
41
42
43
44
45
  def __init__(self, output_dir=None, root_data_dir=None):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
    """

46
    self.output_dir = output_dir
47
    self.data_dir = os.path.join(root_data_dir, 'cifar-10-batches-bin')
48
49
50
51
52

  def resnet56_1_gpu(self):
    """Test layers model with Estimator and distribution strategies."""
    self._setup()
    flags.FLAGS.num_gpus = 1
53
    flags.FLAGS.data_dir = self.data_dir
54
55
56
57
58
    flags.FLAGS.batch_size = 128
    flags.FLAGS.train_epochs = 182
    flags.FLAGS.model_dir = self._get_model_dir('resnet56_1_gpu')
    flags.FLAGS.resnet_size = 56
    flags.FLAGS.dtype = 'fp32'
59
    flags.FLAGS.hooks = ['ExamplesPerSecondHook']
60
    self._run_and_report_benchmark()
61
62
63
64
65

  def resnet56_fp16_1_gpu(self):
    """Test layers FP16 model with Estimator and distribution strategies."""
    self._setup()
    flags.FLAGS.num_gpus = 1
66
    flags.FLAGS.data_dir = self.data_dir
67
68
69
70
71
    flags.FLAGS.batch_size = 128
    flags.FLAGS.train_epochs = 182
    flags.FLAGS.model_dir = self._get_model_dir('resnet56_fp16_1_gpu')
    flags.FLAGS.resnet_size = 56
    flags.FLAGS.dtype = 'fp16'
72
    flags.FLAGS.hooks = ['ExamplesPerSecondHook']
73
    self._run_and_report_benchmark()
74
75
76
77

  def resnet56_2_gpu(self):
    """Test layers model with Estimator and dist_strat. 2 GPUs."""
    self._setup()
78
    flags.FLAGS.num_gpus = 2
79
    flags.FLAGS.data_dir = self.data_dir
80
81
82
83
84
    flags.FLAGS.batch_size = 128
    flags.FLAGS.train_epochs = 182
    flags.FLAGS.model_dir = self._get_model_dir('resnet56_2_gpu')
    flags.FLAGS.resnet_size = 56
    flags.FLAGS.dtype = 'fp32'
85
    flags.FLAGS.hooks = ['ExamplesPerSecondHook']
86
    self._run_and_report_benchmark()
87
88
89
90
91

  def resnet56_fp16_2_gpu(self):
    """Test layers FP16 model with Estimator and dist_strat. 2 GPUs."""
    self._setup()
    flags.FLAGS.num_gpus = 2
92
    flags.FLAGS.data_dir = self.data_dir
93
94
95
96
97
    flags.FLAGS.batch_size = 128
    flags.FLAGS.train_epochs = 182
    flags.FLAGS.model_dir = self._get_model_dir('resnet56_fp16_2_gpu')
    flags.FLAGS.resnet_size = 56
    flags.FLAGS.dtype = 'fp16'
98
    flags.FLAGS.hooks = ['ExamplesPerSecondHook']
99
100
101
    self._run_and_report_benchmark()

  def unit_test(self):
Toby Boyd's avatar
Toby Boyd committed
102
    """A lightweight test that can finish quickly."""
103
104
    self._setup()
    flags.FLAGS.num_gpus = 1
105
    flags.FLAGS.data_dir = self.data_dir
106
107
108
109
110
    flags.FLAGS.batch_size = 128
    flags.FLAGS.train_epochs = 1
    flags.FLAGS.model_dir = self._get_model_dir('resnet56_1_gpu')
    flags.FLAGS.resnet_size = 8
    flags.FLAGS.dtype = 'fp32'
111
    flags.FLAGS.hooks = ['ExamplesPerSecondHook']
112
113
114
    self._run_and_report_benchmark()

  def _run_and_report_benchmark(self):
Toby Boyd's avatar
Toby Boyd committed
115
    """Executes benchmark and reports result."""
116
    start_time_sec = time.time()
117
    stats = cifar_main.run_cifar(flags.FLAGS)
118
119
    wall_time_sec = time.time() - start_time_sec

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    examples_per_sec_hook = None
    for hook in stats['train_hooks']:
      if isinstance(hook, hooks.ExamplesPerSecondHook):
        examples_per_sec_hook = hook
        break

    eval_results = stats['eval_results']
    extras = {}
    extras['accuracy_top_1'] = self._json_description(
        eval_results['accuracy'].item(),
        priority=0)
    extras['accuracy_top_5'] = self._json_description(
        eval_results['accuracy_top_5'].item())
    if examples_per_sec_hook:
      exp_per_second_list = examples_per_sec_hook.current_examples_per_sec_list
      # ExamplesPerSecondHook skips the first 10 steps.
      exp_per_sec = sum(exp_per_second_list) / (len(exp_per_second_list))
      extras['exp_per_second'] = self._json_description(exp_per_sec)

139
    self.report_benchmark(
140
        iters=eval_results['global_step'],
141
        wall_time=wall_time_sec,
142
        extras=extras)
143
144
145
146
147
148

  def _json_description(self,
                        value,
                        priority=None,
                        min_value=None,
                        max_value=None):
Toby Boyd's avatar
Toby Boyd committed
149
    """Get a json-formatted string describing the attributes for a metric."""
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

    attributes = {}
    attributes['value'] = value
    if priority:
      attributes['priority'] = priority
    if min_value:
      attributes['min_value'] = min_value
    if max_value:
      attributes['max_value'] = max_value

    if min_value or max_value:
      succeeded = True
      if min_value and value < min_value:
        succeeded = False
      if max_value and value > max_value:
        succeeded = False
      attributes['succeeded'] = succeeded

    return json.dumps(attributes)
169
170
171
172
173

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)

  def _setup(self):
174
    tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.DEBUG)
175
176
177
178
179
180
181
182
    if EstimatorCifar10BenchmarkTests.local_flags is None:
      cifar_main.define_cifar_flags()
      # Loads flags to get defaults to then override.
      flags.FLAGS(['foo'])
      saved_flag_values = flagsaver.save_flag_values()
      EstimatorCifar10BenchmarkTests.local_flags = saved_flag_values
      return
    flagsaver.restore_flag_values(EstimatorCifar10BenchmarkTests.local_flags)