estimator_cifar_benchmark.py 6.01 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Executes Estimator benchmarks and accuracy tests."""
Shining Sun's avatar
Shining Sun committed
16
17
18

from __future__ import absolute_import
from __future__ import division
19
20
from __future__ import print_function

21
import json
22
import os
Toby Boyd's avatar
Toby Boyd committed
23
import time
24
25
26
27
28
29

from absl import flags
from absl.testing import flagsaver
import tensorflow as tf  # pylint: disable=g-bad-import-order

from official.resnet import cifar10_main as cifar_main
30
from official.utils.logs import hooks
31

32
DATA_DIR = '/data/cifar10_data/cifar-10-batches-bin'
33
34


35
class EstimatorCifar10BenchmarkTests(tf.test.Benchmark):
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
  """Benchmarks and accuracy tests for Estimator ResNet56."""

  local_flags = None

  def __init__(self, output_dir=None):
    self.output_dir = output_dir

  def resnet56_1_gpu(self):
    """Test layers model with Estimator and distribution strategies."""
    self._setup()
    flags.FLAGS.num_gpus = 1
    flags.FLAGS.data_dir = DATA_DIR
    flags.FLAGS.batch_size = 128
    flags.FLAGS.train_epochs = 182
    flags.FLAGS.model_dir = self._get_model_dir('resnet56_1_gpu')
    flags.FLAGS.resnet_size = 56
    flags.FLAGS.dtype = 'fp32'
53
    flags.FLAGS.hooks = ['ExamplesPerSecondHook']
54
    self._run_and_report_benchmark()
55
56
57
58
59
60
61
62
63
64
65

  def resnet56_fp16_1_gpu(self):
    """Test layers FP16 model with Estimator and distribution strategies."""
    self._setup()
    flags.FLAGS.num_gpus = 1
    flags.FLAGS.data_dir = DATA_DIR
    flags.FLAGS.batch_size = 128
    flags.FLAGS.train_epochs = 182
    flags.FLAGS.model_dir = self._get_model_dir('resnet56_fp16_1_gpu')
    flags.FLAGS.resnet_size = 56
    flags.FLAGS.dtype = 'fp16'
66
    flags.FLAGS.hooks = ['ExamplesPerSecondHook']
67
    self._run_and_report_benchmark()
68
69
70
71

  def resnet56_2_gpu(self):
    """Test layers model with Estimator and dist_strat. 2 GPUs."""
    self._setup()
72
    flags.FLAGS.num_gpus = 2
73
74
75
76
77
78
    flags.FLAGS.data_dir = DATA_DIR
    flags.FLAGS.batch_size = 128
    flags.FLAGS.train_epochs = 182
    flags.FLAGS.model_dir = self._get_model_dir('resnet56_2_gpu')
    flags.FLAGS.resnet_size = 56
    flags.FLAGS.dtype = 'fp32'
79
    flags.FLAGS.hooks = ['ExamplesPerSecondHook']
80
    self._run_and_report_benchmark()
81
82
83
84
85
86
87
88
89
90
91

  def resnet56_fp16_2_gpu(self):
    """Test layers FP16 model with Estimator and dist_strat. 2 GPUs."""
    self._setup()
    flags.FLAGS.num_gpus = 2
    flags.FLAGS.data_dir = DATA_DIR
    flags.FLAGS.batch_size = 128
    flags.FLAGS.train_epochs = 182
    flags.FLAGS.model_dir = self._get_model_dir('resnet56_fp16_2_gpu')
    flags.FLAGS.resnet_size = 56
    flags.FLAGS.dtype = 'fp16'
92
    flags.FLAGS.hooks = ['ExamplesPerSecondHook']
93
94
95
    self._run_and_report_benchmark()

  def unit_test(self):
Toby Boyd's avatar
Toby Boyd committed
96
    """A lightweight test that can finish quickly."""
97
98
99
100
101
102
103
104
    self._setup()
    flags.FLAGS.num_gpus = 1
    flags.FLAGS.data_dir = DATA_DIR
    flags.FLAGS.batch_size = 128
    flags.FLAGS.train_epochs = 1
    flags.FLAGS.model_dir = self._get_model_dir('resnet56_1_gpu')
    flags.FLAGS.resnet_size = 8
    flags.FLAGS.dtype = 'fp32'
105
    flags.FLAGS.hooks = ['ExamplesPerSecondHook']
106
107
108
    self._run_and_report_benchmark()

  def _run_and_report_benchmark(self):
Toby Boyd's avatar
Toby Boyd committed
109
    """Executes benchmark and reports result."""
110
    start_time_sec = time.time()
111
    stats = cifar_main.run_cifar(flags.FLAGS)
112
113
    wall_time_sec = time.time() - start_time_sec

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    examples_per_sec_hook = None
    for hook in stats['train_hooks']:
      if isinstance(hook, hooks.ExamplesPerSecondHook):
        examples_per_sec_hook = hook
        break

    eval_results = stats['eval_results']
    extras = {}
    extras['accuracy_top_1'] = self._json_description(
        eval_results['accuracy'].item(),
        priority=0)
    extras['accuracy_top_5'] = self._json_description(
        eval_results['accuracy_top_5'].item())
    if examples_per_sec_hook:
      exp_per_second_list = examples_per_sec_hook.current_examples_per_sec_list
      # ExamplesPerSecondHook skips the first 10 steps.
      exp_per_sec = sum(exp_per_second_list) / (len(exp_per_second_list))
      extras['exp_per_second'] = self._json_description(exp_per_sec)

133
    self.report_benchmark(
134
        iters=eval_results['global_step'],
135
        wall_time=wall_time_sec,
136
        extras=extras)
137
138
139
140
141
142

  def _json_description(self,
                        value,
                        priority=None,
                        min_value=None,
                        max_value=None):
Toby Boyd's avatar
Toby Boyd committed
143
    """Get a json-formatted string describing the attributes for a metric."""
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

    attributes = {}
    attributes['value'] = value
    if priority:
      attributes['priority'] = priority
    if min_value:
      attributes['min_value'] = min_value
    if max_value:
      attributes['max_value'] = max_value

    if min_value or max_value:
      succeeded = True
      if min_value and value < min_value:
        succeeded = False
      if max_value and value > max_value:
        succeeded = False
      attributes['succeeded'] = succeeded

    return json.dumps(attributes)
163
164
165
166
167

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)

  def _setup(self):
168
    tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.DEBUG)
169
170
171
172
173
174
175
176
    if EstimatorCifar10BenchmarkTests.local_flags is None:
      cifar_main.define_cifar_flags()
      # Loads flags to get defaults to then override.
      flags.FLAGS(['foo'])
      saved_flag_values = flagsaver.save_flag_values()
      EstimatorCifar10BenchmarkTests.local_flags = saved_flag_values
      return
    flagsaver.restore_flag_values(EstimatorCifar10BenchmarkTests.local_flags)