README.md 13 KB
Newer Older
Dan Kondratyuk's avatar
Dan Kondratyuk committed
1
2
# Mobile Video Networks (MoViNets)

Dan Kondratyuk's avatar
Dan Kondratyuk committed
3
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/tensorflow/models/blob/master/official/vision/beta/projects/movinet/movinet_tutorial.ipynb)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
4
5
6
7
8
9
10
[![TensorFlow Hub](https://img.shields.io/badge/TF%20Hub-Models-FF6F00?logo=tensorflow)](https://tfhub.dev/google/collections/movinet)
[![Paper](http://img.shields.io/badge/Paper-arXiv.2103.11511-B3181B?logo=arXiv)](https://arxiv.org/abs/2103.11511)

This repository is the official implementation of
[MoViNets: Mobile Video Networks for Efficient Video
Recognition](https://arxiv.org/abs/2103.11511).

11
12
13
14
<p align="center">
  <img src="https://storage.googleapis.com/tf_model_garden/vision/movinet/artifacts/hoverboard_stream.gif" height=500>
</p>

Dan Kondratyuk's avatar
Dan Kondratyuk committed
15
16
17
18
19
20
## Description

Mobile Video Networks (MoViNets) are efficient video classification models
runnable on mobile devices. MoViNets demonstrate state-of-the-art accuracy and
efficiency on several large-scale video action recognition datasets.

21
22
23
24
25
26
27
On [Kinetics 600](https://deepmind.com/research/open-source/kinetics),
MoViNet-A6 achieves 84.8% top-1 accuracy, outperforming recent
Vision Transformer models like [ViViT](https://arxiv.org/abs/2103.15691) (83.0%)
and [VATT](https://arxiv.org/abs/2104.11178) (83.6%) without any additional
training data, while using 10x fewer FLOPs. And streaming MoViNet-A0 achieves
72% accuracy while using 3x fewer FLOPs than MobileNetV3-large (68%).

Dan Kondratyuk's avatar
Dan Kondratyuk committed
28
29
30
There is a large gap between video model performance of accurate models and
efficient models for video action recognition. On the one hand, 2D MobileNet
CNNs are fast and can operate on streaming video in real time, but are prone to
31
be noisy and inaccurate. On the other hand, 3D CNNs are accurate, but are
Dan Kondratyuk's avatar
Dan Kondratyuk committed
32
33
34
35
36
37
38
39
40
41
memory and computation intensive and cannot operate on streaming video.

MoViNets bridge this gap, producing:

- State-of-the art efficiency and accuracy across the model family (MoViNet-A0
to A6).
- Streaming models with 3D causal convolutions substantially reducing memory
usage.
- Temporal ensembles of models to boost efficiency even higher.

42
43
44
MoViNets also improve computational efficiency by outputting high-quality
predictions frame by frame, as opposed to the traditional multi-clip evaluation
approach that performs redundant computation and limits temporal scope.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
45

46
47
48
<p align="center">
  <img src="https://storage.googleapis.com/tf_model_garden/vision/movinet/artifacts/movinet_multi_clip_eval.png" height=200>
</p>
Dan Kondratyuk's avatar
Dan Kondratyuk committed
49

50
51
52
<p align="center">
  <img src="https://storage.googleapis.com/tf_model_garden/vision/movinet/artifacts/movinet_stream_eval.png" height=200>
</p>
Dan Kondratyuk's avatar
Dan Kondratyuk committed
53
54
55

## History

56
57
- **2021-05-30** Add streaming MoViNet checkpoints and examples.
- **2021-05-11** Initial Commit.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
58
59
60
61
62
63
64
65
66
67
68
69

## Authors and Maintainers

* Dan Kondratyuk ([@hyperparticle](https://github.com/hyperparticle))
* Liangzhe Yuan ([@yuanliangzhe](https://github.com/yuanliangzhe))
* Yeqing Li ([@yeqingli](https://github.com/yeqingli))

## Table of Contents

- [Requirements](#requirements)
- [Results and Pretrained Weights](#results-and-pretrained-weights)
  - [Kinetics 600](#kinetics-600)
70
- [Prediction Examples](#prediction-examples)
Dan Kondratyuk's avatar
Dan Kondratyuk committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
- [Training and Evaluation](#training-and-evaluation)
- [References](#references)
- [License](#license)
- [Citation](#citation)

## Requirements

[![TensorFlow 2.4](https://img.shields.io/badge/TensorFlow-2.1-FF6F00?logo=tensorflow)](https://github.com/tensorflow/tensorflow/releases/tag/v2.1.0)
[![Python 3.6](https://img.shields.io/badge/Python-3.6-3776AB?logo=python)](https://www.python.org/downloads/release/python-360/)

To install requirements:

```shell
pip install -r requirements.txt
```

## Results and Pretrained Weights

[![TensorFlow Hub](https://img.shields.io/badge/TF%20Hub-Models-FF6F00?logo=tensorflow)](https://tfhub.dev/google/collections/movinet)
[![TensorBoard](https://img.shields.io/badge/TensorBoard-dev-FF6F00?logo=tensorflow)](https://tensorboard.dev/experiment/Q07RQUlVRWOY4yDw3SnSkA/)

### Kinetics 600

94
95
96
<p align="center">
  <img src="https://storage.googleapis.com/tf_model_garden/vision/movinet/artifacts/movinet_comparison.png" height=500>
</p>
Dan Kondratyuk's avatar
Dan Kondratyuk committed
97
98
99
100

[tensorboard.dev summary](https://tensorboard.dev/experiment/Q07RQUlVRWOY4yDw3SnSkA/)
of training runs across all models.

101
102
103
104
105
106
107
The table below summarizes the performance of each model on
[Kinetics 600](https://deepmind.com/research/open-source/kinetics)
and provides links to download pretrained models. All models are evaluated on
single clips with the same resolution as training.

Note: MoViNet-A6 can be constructed as an ensemble of MoViNet-A4 and
MoViNet-A5.
Dan Kondratyuk's avatar
Dan Kondratyuk committed
108

109
#### Base Models
Dan Kondratyuk's avatar
Dan Kondratyuk committed
110

111
112
113
114
115
116
117
118
119
120
Base models implement standard 3D convolutions without stream buffers.

| Model Name | Top-1 Accuracy | Top-5 Accuracy | Input Shape | GFLOPs\* | Chekpoint | TF Hub SavedModel |
|------------|----------------|----------------|-------------|----------|-----------|-------------------|
| MoViNet-A0-Base | 72.28 | 90.92 | 50 x 172 x 172 | 2.7 | [checkpoint (12 MB)](https://storage.googleapis.com/tf_model_garden/vision/movinet/movinet_a0_base.tar.gz) | [tfhub](https://tfhub.dev/tensorflow/movinet/a0/base/kinetics-600/classification/) |
| MoViNet-A1-Base | 76.69 | 93.40 | 50 x 172 x 172 | 6.0 | [checkpoint (18 MB)](https://storage.googleapis.com/tf_model_garden/vision/movinet/movinet_a1_base.tar.gz) | [tfhub](https://tfhub.dev/tensorflow/movinet/a1/base/kinetics-600/classification/) |
| MoViNet-A2-Base | 78.62 | 94.17 | 50 x 224 x 224 | 10 | [checkpoint (20 MB)](https://storage.googleapis.com/tf_model_garden/vision/movinet/movinet_a2_base.tar.gz) | [tfhub](https://tfhub.dev/tensorflow/movinet/a2/base/kinetics-600/classification/) |
| MoViNet-A3-Base | 81.79 | 95.67 | 120 x 256 x 256 | 57 | [checkpoint (29 MB)](https://storage.googleapis.com/tf_model_garden/vision/movinet/movinet_a3_base.tar.gz) | [tfhub](https://tfhub.dev/tensorflow/movinet/a3/base/kinetics-600/classification/) |
| MoViNet-A4-Base | 83.48 | 96.16 | 80 x 290 x 290 | 110 | [checkpoint (44 MB)](https://storage.googleapis.com/tf_model_garden/vision/movinet/movinet_a4_base.tar.gz) | [tfhub](https://tfhub.dev/tensorflow/movinet/a4/base/kinetics-600/classification/) |
| MoViNet-A5-Base | 84.27 | 96.39 | 120 x 320 x 320 | 280 | [checkpoint (72 MB)](https://storage.googleapis.com/tf_model_garden/vision/movinet/movinet_a5_base.tar.gz) | [tfhub](https://tfhub.dev/tensorflow/movinet/a5/base/kinetics-600/classification/) |
Dan Kondratyuk's avatar
Dan Kondratyuk committed
121
122
123

\*GFLOPs per video on Kinetics 600.

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#### Streaming Models

Streaming models implement causal 3D convolutions with stream buffers.

| Model Name | Top-1 Accuracy | Top-5 Accuracy | Input Shape\* | GFLOPs\*\* | Chekpoint | TF Hub SavedModel |
|------------|----------------|----------------|---------------|------------|-----------|-------------------|
| MoViNet-A0-Stream | 72.05 | 90.63 | 50 x 172 x 172 | 2.7 | [checkpoint (12 MB)](https://storage.googleapis.com/tf_model_garden/vision/movinet/movinet_a0_stream.tar.gz) | [tfhub](https://tfhub.dev/tensorflow/movinet/a0/stream/kinetics-600/classification/) |
| MoViNet-A1-Stream | 76.45 | 93.25 | 50 x 172 x 172 | 6.0 | [checkpoint (18 MB)](https://storage.googleapis.com/tf_model_garden/vision/movinet/movinet_a1_stream.tar.gz) | [tfhub](https://tfhub.dev/tensorflow/movinet/a1/stream/kinetics-600/classification/) |
| MoViNet-A2-Stream | 78.40 | 94.05 | 50 x 224 x 224 | 10 | [checkpoint (20 MB)](https://storage.googleapis.com/tf_model_garden/vision/movinet/movinet_a2_stream.tar.gz) | [tfhub](https://tfhub.dev/tensorflow/movinet/a2/stream/kinetics-600/classification/) |
| MoViNet-A3-Stream | 80.09 | 94.84 | 120 x 256 x 256 | 57 | [checkpoint (29 MB)](https://storage.googleapis.com/tf_model_garden/vision/movinet/movinet_a3_stream.tar.gz) | [tfhub](https://tfhub.dev/tensorflow/movinet/a3/stream/kinetics-600/classification/) |
| MoViNet-A4-Stream | 81.49 | 95.66 | 80 x 290 x 290 | 110 | [checkpoint (44 MB)](https://storage.googleapis.com/tf_model_garden/vision/movinet/movinet_a4_stream.tar.gz) | [tfhub](https://tfhub.dev/tensorflow/movinet/a4/stream/kinetics-600/classification/) |
| MoViNet-A5-Stream | 82.37 | 95.79 | 120 x 320 x 320 | 280 | [checkpoint (72 MB)](https://storage.googleapis.com/tf_model_garden/vision/movinet/movinet_a5_stream.tar.gz) | [tfhub](https://tfhub.dev/tensorflow/movinet/a5/stream/kinetics-600/classification/) |

\*In streaming mode, the number of frames correspond to the total accumulated
duration of the 10-second clip.

\*\*GFLOPs per video on Kinetics 600.

## Prediction Examples
Dan Kondratyuk's avatar
Dan Kondratyuk committed
143
144
145
146

Please check out our [Colab Notebook](https://colab.research.google.com/github/tensorflow/models/tree/master/official/vision/beta/projects/movinet/movinet_tutorial.ipynb)
to get started with MoViNets.

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
This section provides examples on how to run prediction.

For base models, run the following:

```python
import tensorflow as tf

from official.vision.beta.projects.movinet.modeling import movinet
from official.vision.beta.projects.movinet.modeling import movinet_model

# Create backbone and model.
backbone = movinet.Movinet(
    model_id='a0',
    causal=True,
    use_external_states=True,
)
model = movinet_model.MovinetClassifier(
    backbone, num_classes=600, output_states=True)

# Create your example input here.
# Refer to the paper for recommended input shapes.
inputs = tf.ones([1, 8, 172, 172, 3])

# [Optional] Build the model and load a pretrained checkpoint
model.build(inputs.shape)

checkpoint_dir = '/path/to/checkpoint'
checkpoint_path = tf.train.latest_checkpoint(checkpoint_dir)
checkpoint = tf.train.Checkpoint(model=model)
status = checkpoint.restore(checkpoint_path)
status.assert_existing_objects_matched()

# Run the model prediction.
output = model(inputs)
prediction = tf.argmax(output, -1)
```

For streaming models, run the following:

```python
import tensorflow as tf

from official.vision.beta.projects.movinet.modeling import movinet
from official.vision.beta.projects.movinet.modeling import movinet_model

# Create backbone and model.
backbone = movinet.Movinet(
    model_id='a0',
    causal=True,
    use_external_states=True,
)
model = movinet_model.MovinetClassifier(
    backbone, num_classes=600, output_states=True)

# Create your example input here.
# Refer to the paper for recommended input shapes.
inputs = tf.ones([1, 8, 172, 172, 3])

# [Optional] Build the model and load a pretrained checkpoint
model.build(inputs.shape)

checkpoint_dir = '/path/to/checkpoint'
checkpoint_path = tf.train.latest_checkpoint(checkpoint_dir)
checkpoint = tf.train.Checkpoint(model=model)
status = checkpoint.restore(checkpoint_path)
status.assert_existing_objects_matched()

# Split the video into individual frames.
# Note: we can also split into larger clips as well (e.g., 8-frame clips).
# Running on larger clips will slightly reduce latency overhead, but
# will consume more memory.
frames = tf.split(inputs, inputs.shape[1], axis=1)

# Initialize the dict of states. All state tensors are initially zeros.
init_states = model.init_states(tf.shape(inputs))

# Run the model prediction by looping over each frame.
states = init_states
predictions = []
for frame in frames:
  output, states = model({**states, 'image': frame})
  predictions.append(output)

# The video classification will simply be the last output of the model.
final_prediction = tf.argmax(predictions[-1], -1)

# Alternatively, we can run the network on the entire input video.
# The output should be effectively the same
# (but it may differ a small amount due to floating point errors).
non_streaming_output, _ = model({**init_states, 'image': inputs})
non_streaming_prediction = tf.argmax(non_streaming_output, -1)
```

## Training and Evaluation

Dan Kondratyuk's avatar
Dan Kondratyuk committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
Run this command line for continuous training and evaluation.

```shell
MODE=train_and_eval  # Can also be 'train'
CONFIG_FILE=official/vision/beta/projects/movinet/configs/yaml/movinet_a0_k600_8x8.yaml
python3 official/vision/beta/projects/movinet/train.py \
    --experiment=movinet_kinetics600 \
    --mode=${MODE} \
    --model_dir=/tmp/movinet/ \
    --config_file=${CONFIG_FILE} \
    --params_override="" \
    --gin_file="" \
    --gin_params="" \
    --tpu="" \
    --tf_data_service=""
```

Run this command line for evaluation.

```shell
MODE=eval  # Can also be 'eval_continuous' for use during training
CONFIG_FILE=official/vision/beta/projects/movinet/configs/yaml/movinet_a0_k600_8x8.yaml
python3 official/vision/beta/projects/movinet/train.py \
    --experiment=movinet_kinetics600 \
    --mode=${MODE} \
    --model_dir=/tmp/movinet/ \
    --config_file=${CONFIG_FILE} \
    --params_override="" \
    --gin_file="" \
    --gin_params="" \
    --tpu="" \
    --tf_data_service=""
```

## License

[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)

This project is licensed under the terms of the **Apache License 2.0**.

## Citation

If you want to cite this code in your research paper, please use the following
information.

```
@article{kondratyuk2021movinets,
  title={MoViNets: Mobile Video Networks for Efficient Video Recognition},
  author={Dan Kondratyuk, Liangzhe Yuan, Yandong Li, Li Zhang, Matthew Brown, and Boqing Gong},
  journal={arXiv preprint arXiv:2103.11511},
  year={2021}
}
```