layers_test.py 3.62 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

import tensorflow as tf

import layers


class LayersTest(tf.test.TestCase):

  def test_residual_block(self):

    n = 2
    h = 32
    w = h
    c = 256

    input_tensor = tf.random_uniform((n, h, w, c))
    output_tensor = layers._residual_block(
        input_net=input_tensor,
        num_outputs=c,
        kernel_size=3,
        stride=1,
        padding_size=1)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(output_tensor)
      self.assertTupleEqual((n, h, w, c), output.shape)

  def test_generator_down_sample(self):

    n = 2
    h = 128
    w = h
    c = 3 + 3

    input_tensor = tf.random_uniform((n, h, w, c))
    output_tensor = layers.generator_down_sample(input_tensor)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(output_tensor)
      self.assertTupleEqual((n, h // 4, w // 4, 256), output.shape)

  def test_generator_bottleneck(self):

    n = 2
    h = 32
    w = h
    c = 256

    input_tensor = tf.random_uniform((n, h, w, c))
    output_tensor = layers.generator_bottleneck(input_tensor)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(output_tensor)
      self.assertTupleEqual((n, h, w, c), output.shape)

  def test_generator_up_sample(self):

    n = 2
    h = 32
    w = h
    c = 256
    c_out = 3

    input_tensor = tf.random_uniform((n, h, w, c))
    output_tensor = layers.generator_up_sample(input_tensor, c_out)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(output_tensor)
      self.assertTupleEqual((n, h * 4, w * 4, c_out), output.shape)

  def test_discriminator_input_hidden(self):

    n = 2
    h = 128
    w = 128
    c = 3

    input_tensor = tf.random_uniform((n, h, w, c))
    output_tensor = layers.discriminator_input_hidden(input_tensor)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(output_tensor)
      self.assertTupleEqual((n, 2, 2, 2048), output.shape)

  def test_discriminator_output_source(self):

    n = 2
    h = 2
    w = 2
    c = 2048

    input_tensor = tf.random_uniform((n, h, w, c))
    output_tensor = layers.discriminator_output_source(input_tensor)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(output_tensor)
      self.assertTupleEqual((n, h, w, 1), output.shape)

  def test_discriminator_output_class(self):

    n = 2
    h = 2
    w = 2
    c = 2048
    num_domain = 3

    input_tensor = tf.random_uniform((n, h, w, c))
    output_tensor = layers.discriminator_output_class(input_tensor, num_domain)

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      output = sess.run(output_tensor)
      self.assertTupleEqual((n, num_domain), output.shape)


if __name__ == '__main__':
  tf.test.main()