# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import tensorflow as tf import layers class LayersTest(tf.test.TestCase): def test_residual_block(self): n = 2 h = 32 w = h c = 256 input_tensor = tf.random_uniform((n, h, w, c)) output_tensor = layers._residual_block( input_net=input_tensor, num_outputs=c, kernel_size=3, stride=1, padding_size=1) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(output_tensor) self.assertTupleEqual((n, h, w, c), output.shape) def test_generator_down_sample(self): n = 2 h = 128 w = h c = 3 + 3 input_tensor = tf.random_uniform((n, h, w, c)) output_tensor = layers.generator_down_sample(input_tensor) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(output_tensor) self.assertTupleEqual((n, h // 4, w // 4, 256), output.shape) def test_generator_bottleneck(self): n = 2 h = 32 w = h c = 256 input_tensor = tf.random_uniform((n, h, w, c)) output_tensor = layers.generator_bottleneck(input_tensor) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(output_tensor) self.assertTupleEqual((n, h, w, c), output.shape) def test_generator_up_sample(self): n = 2 h = 32 w = h c = 256 c_out = 3 input_tensor = tf.random_uniform((n, h, w, c)) output_tensor = layers.generator_up_sample(input_tensor, c_out) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(output_tensor) self.assertTupleEqual((n, h * 4, w * 4, c_out), output.shape) def test_discriminator_input_hidden(self): n = 2 h = 128 w = 128 c = 3 input_tensor = tf.random_uniform((n, h, w, c)) output_tensor = layers.discriminator_input_hidden(input_tensor) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(output_tensor) self.assertTupleEqual((n, 2, 2, 2048), output.shape) def test_discriminator_output_source(self): n = 2 h = 2 w = 2 c = 2048 input_tensor = tf.random_uniform((n, h, w, c)) output_tensor = layers.discriminator_output_source(input_tensor) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(output_tensor) self.assertTupleEqual((n, h, w, 1), output.shape) def test_discriminator_output_class(self): n = 2 h = 2 w = 2 c = 2048 num_domain = 3 input_tensor = tf.random_uniform((n, h, w, c)) output_tensor = layers.discriminator_output_class(input_tensor, num_domain) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) output = sess.run(output_tensor) self.assertTupleEqual((n, num_domain), output.shape) if __name__ == '__main__': tf.test.main()