mnist_eager.py 7.52 KB
Newer Older
Asim Shankar's avatar
Asim Shankar committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""MNIST model training with TensorFlow eager execution.

See:
https://research.googleblog.com/2017/10/eager-execution-imperative-define-by.html

This program demonstrates training of the convolutional neural network model
defined in mnist.py with eager execution enabled.

If you are not interested in eager execution, you should ignore this file.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time

32
33
34
35
36
37
# pylint: disable=g-bad-import-order
from absl import app as absl_app
from absl import flags
import tensorflow as tf
import tensorflow.contrib.eager as tfe
# pylint: enable=g-bad-import-order
38

Karmel Allison's avatar
Karmel Allison committed
39
from official.mnist import dataset as mnist_dataset
40
from official.mnist import mnist
41
from official.utils.flags import core as flags_core
Asim Shankar's avatar
Asim Shankar committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57


def loss(logits, labels):
  return tf.reduce_mean(
      tf.nn.sparse_softmax_cross_entropy_with_logits(
          logits=logits, labels=labels))


def compute_accuracy(logits, labels):
  predictions = tf.argmax(logits, axis=1, output_type=tf.int64)
  labels = tf.cast(labels, tf.int64)
  batch_size = int(logits.shape[0])
  return tf.reduce_sum(
      tf.cast(tf.equal(predictions, labels), dtype=tf.float32)) / batch_size


58
def train(model, optimizer, dataset, step_counter, log_interval=None):
Asim Shankar's avatar
Asim Shankar committed
59
60
61
62
  """Trains model on `dataset` using `optimizer`."""

  start = time.time()
  for (batch, (images, labels)) in enumerate(tfe.Iterator(dataset)):
63
64
    with tf.contrib.summary.record_summaries_every_n_global_steps(
        10, global_step=step_counter):
Asim Shankar's avatar
Asim Shankar committed
65
66
67
      # Record the operations used to compute the loss given the input,
      # so that the gradient of the loss with respect to the variables
      # can be computed.
68
      with tf.GradientTape() as tape:
Asim Shankar's avatar
Asim Shankar committed
69
70
71
72
73
74
        logits = model(images, training=True)
        loss_value = loss(logits, labels)
        tf.contrib.summary.scalar('loss', loss_value)
        tf.contrib.summary.scalar('accuracy', compute_accuracy(logits, labels))
      grads = tape.gradient(loss_value, model.variables)
      optimizer.apply_gradients(
75
          zip(grads, model.variables), global_step=step_counter)
Asim Shankar's avatar
Asim Shankar committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
      if log_interval and batch % log_interval == 0:
        rate = log_interval / (time.time() - start)
        print('Step #%d\tLoss: %.6f (%d steps/sec)' % (batch, loss_value, rate))
        start = time.time()


def test(model, dataset):
  """Perform an evaluation of `model` on the examples from `dataset`."""
  avg_loss = tfe.metrics.Mean('loss')
  accuracy = tfe.metrics.Accuracy('accuracy')

  for (images, labels) in tfe.Iterator(dataset):
    logits = model(images, training=False)
    avg_loss(loss(logits, labels))
    accuracy(
        tf.argmax(logits, axis=1, output_type=tf.int64),
        tf.cast(labels, tf.int64))
  print('Test set: Average loss: %.4f, Accuracy: %4f%%\n' %
        (avg_loss.result(), 100 * accuracy.result()))
  with tf.contrib.summary.always_record_summaries():
    tf.contrib.summary.scalar('loss', avg_loss.result())
    tf.contrib.summary.scalar('accuracy', accuracy.result())


100
101
102
103
104
105
def run_mnist_eager(flags_obj):
  """Run MNIST training and eval loop in eager mode.

  Args:
    flags_obj: An object containing parsed flag values.
  """
106
  tf.enable_eager_execution()
Asim Shankar's avatar
Asim Shankar committed
107

108
  # Automatically determine device and data_format
Asim Shankar's avatar
Asim Shankar committed
109
  (device, data_format) = ('/gpu:0', 'channels_first')
110
  if flags_obj.no_gpu or tf.test.is_gpu_available():
Asim Shankar's avatar
Asim Shankar committed
111
    (device, data_format) = ('/cpu:0', 'channels_last')
112
  # If data_format is defined in FLAGS, overwrite automatically set value.
113
114
  if flags_obj.data_format is not None:
    data_format = flags_obj.data_format
Asim Shankar's avatar
Asim Shankar committed
115
116
117
  print('Using device %s, and data format %s.' % (device, data_format))

  # Load the datasets
118
119
120
121
  train_ds = mnist_dataset.train(flags_obj.data_dir).shuffle(60000).batch(
      flags_obj.batch_size)
  test_ds = mnist_dataset.test(flags_obj.data_dir).batch(
      flags_obj.batch_size)
Asim Shankar's avatar
Asim Shankar committed
122
123

  # Create the model and optimizer
124
  model = mnist.create_model(data_format)
125
  optimizer = tf.train.MomentumOptimizer(flags_obj.lr, flags_obj.momentum)
Asim Shankar's avatar
Asim Shankar committed
126

127
  # Create file writers for writing TensorBoard summaries.
128
  if flags_obj.output_dir:
Asim Shankar's avatar
Asim Shankar committed
129
130
131
    # Create directories to which summaries will be written
    # tensorboard --logdir=<output_dir>
    # can then be used to see the recorded summaries.
132
133
134
    train_dir = os.path.join(flags_obj.output_dir, 'train')
    test_dir = os.path.join(flags_obj.output_dir, 'eval')
    tf.gfile.MakeDirs(flags_obj.output_dir)
Asim Shankar's avatar
Asim Shankar committed
135
136
137
138
139
140
141
  else:
    train_dir = None
    test_dir = None
  summary_writer = tf.contrib.summary.create_file_writer(
      train_dir, flush_millis=10000)
  test_summary_writer = tf.contrib.summary.create_file_writer(
      test_dir, flush_millis=10000, name='test')
142
143

  # Create and restore checkpoint (if one exists on the path)
144
  checkpoint_prefix = os.path.join(flags_obj.model_dir, 'ckpt')
145
146
147
148
  step_counter = tf.train.get_or_create_global_step()
  checkpoint = tfe.Checkpoint(
      model=model, optimizer=optimizer, step_counter=step_counter)
  # Restore variables on creation if a checkpoint exists.
149
  checkpoint.restore(tf.train.latest_checkpoint(flags_obj.model_dir))
150
151

  # Train and evaluate for a set number of epochs.
Asim Shankar's avatar
Asim Shankar committed
152
  with tf.device(device):
153
    for _ in range(flags_obj.train_epochs):
154
155
      start = time.time()
      with summary_writer.as_default():
156
157
        train(model, optimizer, train_ds, step_counter,
              flags_obj.log_interval)
158
159
160
161
162
      end = time.time()
      print('\nTrain time for epoch #%d (%d total steps): %f' %
            (checkpoint.save_counter.numpy() + 1,
             step_counter.numpy(),
             end - start))
Asim Shankar's avatar
Asim Shankar committed
163
164
      with test_summary_writer.as_default():
        test(model, test_ds)
165
      checkpoint.save(checkpoint_prefix)
Asim Shankar's avatar
Asim Shankar committed
166
167


168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
def define_mnist_eager_flags():
  """Defined flags and defaults for MNIST in eager mode."""
  flags_core.define_base_eager()
  flags_core.define_image()
  flags.adopt_module_key_flags(flags_core)

  flags.DEFINE_integer(
      name='log_interval', short_name='li', default=10,
      help=flags_core.help_wrap('batches between logging training status'))

  flags.DEFINE_string(
      name='output_dir', short_name='od', default=None,
      help=flags_core.help_wrap('Directory to write TensorBoard summaries'))

  flags.DEFINE_float(name='learning_rate', short_name='lr', default=0.01,
                     help=flags_core.help_wrap('Learning rate.'))

  flags.DEFINE_float(name='momentum', short_name='m', default=0.5,
                     help=flags_core.help_wrap('SGD momentum.'))

  flags.DEFINE_bool(name='no_gpu', short_name='nogpu', default=False,
                    help=flags_core.help_wrap(
                        'disables GPU usage even if a GPU is available'))

  flags_core.set_defaults(
      data_dir='/tmp/tensorflow/mnist/input_data',
      model_dir='/tmp/tensorflow/mnist/checkpoints/',
      batch_size=100,
      train_epochs=10,
  )
Asim Shankar's avatar
Asim Shankar committed
198

199
200
201
202
203

def main(_):
  run_mnist_eager(flags.FLAGS)


204
if __name__ == '__main__':
205
206
  define_mnist_eager_flags()
  absl_app.run(main=main)