mnist_eager.py 7.51 KB
Newer Older
Asim Shankar's avatar
Asim Shankar committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""MNIST model training with TensorFlow eager execution.

See:
https://research.googleblog.com/2017/10/eager-execution-imperative-define-by.html

This program demonstrates training of the convolutional neural network model
defined in mnist.py with eager execution enabled.

If you are not interested in eager execution, you should ignore this file.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
import sys
import time

Karmel Allison's avatar
Karmel Allison committed
34
35
import tensorflow as tf  # pylint: disable=g-bad-import-order
import tensorflow.contrib.eager as tfe  # pylint: disable=g-bad-import-order
36

Karmel Allison's avatar
Karmel Allison committed
37
from official.mnist import dataset as mnist_dataset
38
from official.mnist import mnist
39
from official.utils.arg_parsers import parsers
Asim Shankar's avatar
Asim Shankar committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


def loss(logits, labels):
  return tf.reduce_mean(
      tf.nn.sparse_softmax_cross_entropy_with_logits(
          logits=logits, labels=labels))


def compute_accuracy(logits, labels):
  predictions = tf.argmax(logits, axis=1, output_type=tf.int64)
  labels = tf.cast(labels, tf.int64)
  batch_size = int(logits.shape[0])
  return tf.reduce_sum(
      tf.cast(tf.equal(predictions, labels), dtype=tf.float32)) / batch_size


56
def train(model, optimizer, dataset, step_counter, log_interval=None):
Asim Shankar's avatar
Asim Shankar committed
57
58
59
60
  """Trains model on `dataset` using `optimizer`."""

  start = time.time()
  for (batch, (images, labels)) in enumerate(tfe.Iterator(dataset)):
61
62
    with tf.contrib.summary.record_summaries_every_n_global_steps(
        10, global_step=step_counter):
Asim Shankar's avatar
Asim Shankar committed
63
64
65
      # Record the operations used to compute the loss given the input,
      # so that the gradient of the loss with respect to the variables
      # can be computed.
Asim Shankar's avatar
Asim Shankar committed
66
67
68
69
70
71
72
      with tfe.GradientTape() as tape:
        logits = model(images, training=True)
        loss_value = loss(logits, labels)
        tf.contrib.summary.scalar('loss', loss_value)
        tf.contrib.summary.scalar('accuracy', compute_accuracy(logits, labels))
      grads = tape.gradient(loss_value, model.variables)
      optimizer.apply_gradients(
73
          zip(grads, model.variables), global_step=step_counter)
Asim Shankar's avatar
Asim Shankar committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
      if log_interval and batch % log_interval == 0:
        rate = log_interval / (time.time() - start)
        print('Step #%d\tLoss: %.6f (%d steps/sec)' % (batch, loss_value, rate))
        start = time.time()


def test(model, dataset):
  """Perform an evaluation of `model` on the examples from `dataset`."""
  avg_loss = tfe.metrics.Mean('loss')
  accuracy = tfe.metrics.Accuracy('accuracy')

  for (images, labels) in tfe.Iterator(dataset):
    logits = model(images, training=False)
    avg_loss(loss(logits, labels))
    accuracy(
        tf.argmax(logits, axis=1, output_type=tf.int64),
        tf.cast(labels, tf.int64))
  print('Test set: Average loss: %.4f, Accuracy: %4f%%\n' %
        (avg_loss.result(), 100 * accuracy.result()))
  with tf.contrib.summary.always_record_summaries():
    tf.contrib.summary.scalar('loss', avg_loss.result())
    tf.contrib.summary.scalar('accuracy', accuracy.result())


98
99
100
101
def main(argv):
  parser = MNISTEagerArgParser()
  flags = parser.parse_args(args=argv[1:])

Asim Shankar's avatar
Asim Shankar committed
102
103
  tfe.enable_eager_execution()

104
  # Automatically determine device and data_format
Asim Shankar's avatar
Asim Shankar committed
105
  (device, data_format) = ('/gpu:0', 'channels_first')
106
  if flags.no_gpu or tfe.num_gpus() <= 0:
Asim Shankar's avatar
Asim Shankar committed
107
    (device, data_format) = ('/cpu:0', 'channels_last')
108
  # If data_format is defined in FLAGS, overwrite automatically set value.
109
  if flags.data_format is not None:
110
    data_format = flags.data_format
Asim Shankar's avatar
Asim Shankar committed
111
112
113
  print('Using device %s, and data format %s.' % (device, data_format))

  # Load the datasets
114
115
116
  train_ds = mnist_dataset.train(flags.data_dir).shuffle(60000).batch(
      flags.batch_size)
  test_ds = mnist_dataset.test(flags.data_dir).batch(flags.batch_size)
Asim Shankar's avatar
Asim Shankar committed
117
118
119

  # Create the model and optimizer
  model = mnist.Model(data_format)
120
  optimizer = tf.train.MomentumOptimizer(flags.lr, flags.momentum)
Asim Shankar's avatar
Asim Shankar committed
121

122
  # Create file writers for writing TensorBoard summaries.
123
  if flags.output_dir:
Asim Shankar's avatar
Asim Shankar committed
124
125
126
    # Create directories to which summaries will be written
    # tensorboard --logdir=<output_dir>
    # can then be used to see the recorded summaries.
127
128
129
    train_dir = os.path.join(flags.output_dir, 'train')
    test_dir = os.path.join(flags.output_dir, 'eval')
    tf.gfile.MakeDirs(flags.output_dir)
Asim Shankar's avatar
Asim Shankar committed
130
131
132
133
134
135
136
  else:
    train_dir = None
    test_dir = None
  summary_writer = tf.contrib.summary.create_file_writer(
      train_dir, flush_millis=10000)
  test_summary_writer = tf.contrib.summary.create_file_writer(
      test_dir, flush_millis=10000, name='test')
137
138

  # Create and restore checkpoint (if one exists on the path)
139
  checkpoint_prefix = os.path.join(flags.model_dir, 'ckpt')
140
141
142
143
  step_counter = tf.train.get_or_create_global_step()
  checkpoint = tfe.Checkpoint(
      model=model, optimizer=optimizer, step_counter=step_counter)
  # Restore variables on creation if a checkpoint exists.
144
  checkpoint.restore(tf.train.latest_checkpoint(flags.model_dir))
145
146

  # Train and evaluate for a set number of epochs.
Asim Shankar's avatar
Asim Shankar committed
147
  with tf.device(device):
148
    for _ in range(flags.train_epochs):
149
150
      start = time.time()
      with summary_writer.as_default():
151
        train(model, optimizer, train_ds, step_counter, flags.log_interval)
152
153
154
155
156
      end = time.time()
      print('\nTrain time for epoch #%d (%d total steps): %f' %
            (checkpoint.save_counter.numpy() + 1,
             step_counter.numpy(),
             end - start))
Asim Shankar's avatar
Asim Shankar committed
157
158
      with test_summary_writer.as_default():
        test(model, test_ds)
159
      checkpoint.save(checkpoint_prefix)
Asim Shankar's avatar
Asim Shankar committed
160
161


162
class MNISTEagerArgParser(argparse.ArgumentParser):
Karmel Allison's avatar
Karmel Allison committed
163
164
  """Argument parser for running MNIST model with eager training loop."""

165
166
  def __init__(self):
    super(MNISTEagerArgParser, self).__init__(parents=[
Karmel Allison's avatar
Karmel Allison committed
167
168
169
        parsers.BaseParser(
            epochs_between_evals=False, multi_gpu=False, hooks=False),
        parsers.ImageModelParser()])
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

    self.add_argument(
        '--log_interval', '-li',
        type=int,
        default=10,
        metavar='N',
        help='[default: %(default)s] batches between logging training status')
    self.add_argument(
        '--output_dir', '-od',
        type=str,
        default=None,
        metavar='<OD>',
        help='[default: %(default)s] Directory to write TensorBoard summaries')
    self.add_argument(
        '--lr', '-lr',
        type=float,
        default=0.01,
        metavar='<LR>',
        help='[default: %(default)s] learning rate')
    self.add_argument(
        '--momentum', '-m',
        type=float,
        default=0.5,
        metavar='<M>',
        help='[default: %(default)s] SGD momentum')
    self.add_argument(
        '--no_gpu', '-nogpu',
        action='store_true',
        default=False,
        help='disables GPU usage even if a GPU is available')

    self.set_defaults(
        data_dir='/tmp/tensorflow/mnist/input_data',
        model_dir='/tmp/tensorflow/mnist/checkpoints/',
        batch_size=100,
        train_epochs=10,
    )
Asim Shankar's avatar
Asim Shankar committed
207

208
if __name__ == '__main__':
209
  main(argv=sys.argv)