ncf_keras_benchmark.py 15.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time

from absl import flags
24
from absl import logging
25
from absl.testing import flagsaver
Hongkun Yu's avatar
Hongkun Yu committed
26
import tensorflow as tf
27
from official.benchmark import benchmark_wrappers
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
28
from official.benchmark import owner_utils
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
29
from official.benchmark.perfzero_benchmark import PerfZeroBenchmark
30
31
32
33
34
from official.recommendation import ncf_common
from official.recommendation import ncf_keras_main
from official.utils.flags import core

FLAGS = flags.FLAGS
Toby Boyd's avatar
Toby Boyd committed
35
NCF_DATA_DIR_NAME = 'movielens_data'
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
36
NCF_TF_REGRESSION_DATA_DIR_NAME = 'gs://tf-regression/ncf/data'
Toby Boyd's avatar
Toby Boyd committed
37

38

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
39
class NCFKerasBenchmarkBase(PerfZeroBenchmark):
40
41
  """Base class for NCF model benchmark."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
42
43
44
45
  def __init__(self, output_dir=None, default_flags=None, **kwargs):
    super(NCFKerasBenchmarkBase, self).__init__(output_dir, default_flags,
                                                **kwargs)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
46
47
    # Run all benchmarks with ml_perf flag.
    self.default_flags['ml_perf'] = True
48
49
50

  def _setup(self):
    """Sets up and resets flags before each test."""
51
    logging.set_verbosity(logging.INFO)
52
    if NCFKerasBenchmarkBase.local_flags is None:
Toby Boyd's avatar
Toby Boyd committed
53
      ncf_common.define_ncf_flags()
54
55
56
57
      # Loads flags to get defaults to then override. List cannot be empty.
      flags.FLAGS(['foo'])
      core.set_defaults(**self.default_flags)
      saved_flag_values = flagsaver.save_flag_values()
58
      NCFKerasBenchmarkBase.local_flags = saved_flag_values
59
    else:
60
      flagsaver.restore_flag_values(NCFKerasBenchmarkBase.local_flags)
61

62
  @benchmark_wrappers.enable_runtime_flags
Toby Boyd's avatar
Toby Boyd committed
63
  def _run_and_report_benchmark(self, hr_at_10_min=0, hr_at_10_max=0):
64
65
66
67
    start_time_sec = time.time()
    stats = ncf_keras_main.run_ncf(FLAGS)
    wall_time_sec = time.time() - start_time_sec

Toby Boyd's avatar
Toby Boyd committed
68
69
70
    metrics = []
    metrics.append({'name': 'exp_per_second',
                    'value': stats['avg_exp_per_second']})
71

Toby Boyd's avatar
Toby Boyd committed
72
73
74
75
76
77
78
79
80
81
    if hr_at_10_min > 0:
      metrics.append({'name': 'hr_at_10',
                      'value': stats['eval_hit_rate'],
                      'min_value': hr_at_10_min,
                      'max_value': hr_at_10_max})

      metrics.append({'name': 'train_loss',
                      'value': stats['loss']})

    self.report_benchmark(iters=-1, wall_time=wall_time_sec, metrics=metrics)
82
83


84
class NCFKerasAccuracy(NCFKerasBenchmarkBase):
85
86
87
88
  """Benchmark NCF model using real data."""

  def __init__(self,
               output_dir=None,
Toby Boyd's avatar
Toby Boyd committed
89
               root_data_dir=None,
90
91
               default_flags=None,
               **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
92
    root_data_dir = root_data_dir if root_data_dir else ''
93
94
95
    default_flags = {}
    default_flags['dataset'] = 'ml-20m'
    default_flags['num_gpus'] = 1
96
    default_flags['train_epochs'] = 10
97
    default_flags['clean'] = True
98
    default_flags['batch_size'] = 99000
99
100
101
102
103
104
105
    default_flags['learning_rate'] = 0.00382059
    default_flags['beta1'] = 0.783529
    default_flags['beta2'] = 0.909003
    default_flags['epsilon'] = 1.45439e-07
    default_flags['layers'] = [256, 256, 128, 64]
    default_flags['num_factors'] = 64
    default_flags['hr_threshold'] = 0.635
106
    default_flags['ml_perf'] = True
107
    default_flags['use_synthetic_data'] = False
Toby Boyd's avatar
Toby Boyd committed
108
    default_flags['data_dir'] = os.path.join(root_data_dir, NCF_DATA_DIR_NAME)
109

110
    super(NCFKerasAccuracy, self).__init__(
111
112
113
114
        output_dir=output_dir,
        default_flags=default_flags,
        **kwargs)

Toby Boyd's avatar
Toby Boyd committed
115
116
  def _run_and_report_benchmark_mlperf_like(self):
    """Run test and report results.
Toby Boyd's avatar
Toby Boyd committed
117

Toby Boyd's avatar
Toby Boyd committed
118
119
120
    Note: MLPerf like tests are not tuned to hit a specific hr@10 value, but
    we want it recorded.
    """
121
    self._run_and_report_benchmark(hr_at_10_min=0.61)
Toby Boyd's avatar
Toby Boyd committed
122

123
  def _run_and_report_benchmark(self, hr_at_10_min=0.630, hr_at_10_max=0.645):
Toby Boyd's avatar
Toby Boyd committed
124
    """Run test and report results.
Toby Boyd's avatar
Toby Boyd committed
125

Toby Boyd's avatar
Toby Boyd committed
126
127
128
129
130
131
132
133
    Note: Target is 0.635, but some runs are below that level. Until we have
    multi-run tests, we have to accept a lower target.

    Args:
      hr_at_10_min: Minimum acceptable hr@10 value.
      hr_at_10_max: Maximum acceptable hr@10 value.
    """
    super(NCFKerasAccuracy, self)._run_and_report_benchmark(
134
135
        hr_at_10_min=hr_at_10_min,
        hr_at_10_max=hr_at_10_max)
136

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
  def _set_8_gpu_defaults(self):
    FLAGS.num_gpus = 8
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
    FLAGS.train_epochs = 14
    FLAGS.batch_size = 99000
    FLAGS.eval_batch_size = 160000
    FLAGS.train_dataset_path = os.path.join(NCF_TF_REGRESSION_DATA_DIR_NAME,
                                            'training_cycle_*/*')
    FLAGS.eval_dataset_path = os.path.join(NCF_TF_REGRESSION_DATA_DIR_NAME,
                                           'eval_data/*')
    FLAGS.input_meta_data_path = os.path.join(NCF_TF_REGRESSION_DATA_DIR_NAME,
                                              'metadata')
    FLAGS.data_dir = NCF_TF_REGRESSION_DATA_DIR_NAME

154
  def benchmark_1_gpu_early_stop(self):
155
    self._setup()
156
    FLAGS.early_stopping = True
157
158
    self._run_and_report_benchmark()

159
160
161
162
163
164
  def benchmark_1_gpu_no_dist_strat_early_stop(self):
    self._setup()
    FLAGS.distribution_strategy = 'off'
    FLAGS.early_stopping = True
    self._run_and_report_benchmark()

165
166
167
168
169
170
171
172
173
174
175
176
177
  def benchmark_1_gpu_no_dist_strat_run_eagerly_early_stop(self):
    self._setup()
    FLAGS.distribution_strategy = 'off'
    FLAGS.early_stopping = True
    FLAGS.run_eagerly = True
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_early_stop(self):
    self._setup()
    FLAGS.early_stopping = True
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

178
179
180
181
182
183
  def benchmark_1_gpu_ctl_early_stop(self):
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    self._run_and_report_benchmark()

184
185
186
187
188
189
190
  def benchmark_1_gpu_ctl_run_eagerly_early_stop(self):
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    FLAGS.run_eagerly = True
    self._run_and_report_benchmark()

191
192
193
194
195
196
197
  def benchmark_xla_1_gpu_ctl_early_stop(self):
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

198
199
200
201
  def benchmark_2_gpus_early_stop(self):
    self._setup()
    FLAGS.early_stopping = True
    FLAGS.num_gpus = 2
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
202
    FLAGS.eval_batch_size = 160000
203
    self._run_and_report_benchmark()
204

205
  def benchmark_2_gpus_ctl_early_stop(self):
206
    """NCF with custom training loop. Works only in TF 2.0."""
207
208
209
210
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    FLAGS.num_gpus = 2
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
211
    FLAGS.eval_batch_size = 160000
212
213
    self._run_and_report_benchmark()

214
#############################################
215
# Tests below with mlperf in the test name are of two types:
216
217
218
219
220
221
222
#  1) 1 GPU tests are based on MLPerf 0.5 and the TensorFlow pulled submission.
#  2) 8 GPU tests are based on MLPerf 0.5 and use NVIDIA's hyper parameters.
#
# The purpose of both is to get a number to compare to existing results. To do
# this the number of epochs is held constant rather than a race to a given
# accuracy. The accuracy validation is done by the "early_stop" tests.
#############################################
223
224

  def benchmark_1_gpu_mlperf_like(self):
225
    """1 GPU using keras fit/compile."""
226
227
    self._setup()
    FLAGS.train_epochs = 7
Toby Boyd's avatar
Toby Boyd committed
228
    self._run_and_report_benchmark_mlperf_like()
229
230

  def benchmark_1_gpu_no_dist_strat_mlperf_like(self):
231
    """1 GPU using compile/fit without dist_strat."""
232
233
234
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.distribution_strategy = 'off'
Toby Boyd's avatar
Toby Boyd committed
235
    self._run_and_report_benchmark_mlperf_like()
236
237
238
239
240
241

  def benchmark_1_gpu_no_dist_strat_run_eagerly_mlperf_like(self):
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.distribution_strategy = 'off'
    FLAGS.run_eagerly = True
Toby Boyd's avatar
Toby Boyd committed
242
    self._run_and_report_benchmark_mlperf_like()
243
244

  def benchmark_xla_1_gpu_mlperf_like(self):
245
    """1 GPU using compile/fit with XLA."""
246
247
    self._setup()
    FLAGS.train_epochs = 7
248
    FLAGS.enable_xla = True
Toby Boyd's avatar
Toby Boyd committed
249
    self._run_and_report_benchmark_mlperf_like()
250

251
252
253
254
255
  def benchmark_1_gpu_ctl_mlperf_like(self):
    """1 GPU using CTL."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.train_epochs = 7
Toby Boyd's avatar
Toby Boyd committed
256
    self._run_and_report_benchmark_mlperf_like()
257

Nimit Nigania's avatar
Nimit Nigania committed
258
  def benchmark_1_gpu_ctl_fp16_mlperf_like(self):
Tomasz Grel's avatar
Tomasz Grel committed
259
    """1 GPU using CTL and FP16."""
Nimit Nigania's avatar
Nimit Nigania committed
260
261
262
263
264
265
266
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

Tomasz Grel's avatar
Tomasz Grel committed
267
268
269
270
271
272
273
274
  def benchmark_1_gpu_fp16_mlperf_like(self):
    """1 GPU using FP16."""
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
  def benchmark_1_gpu_ctl_fp16_graph_rewrite_mlperf_like(self):
    """1 GPU using CTL and FP16 graph rewrite."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

  def benchmark_1_gpu_fp16_graph_rewrite_mlperf_like(self):
    """1 GPU using FP16 graph rewrite."""
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

294
295
296
297
298
299
300
301
  def benchmark_1_gpu_ctl_run_eagerly_mlperf_like(self):
    """1 GPU using CTL with eager and distribution strategy."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.run_eagerly = True
    FLAGS.train_epochs = 7
    self._run_and_report_benchmark()

302
303
  def benchmark_xla_1_gpu_ctl_mlperf_like(self):
    """1 GPU using CTL with XLA."""
304
305
    self._setup()
    FLAGS.keras_use_ctl = True
306
307
    FLAGS.enable_xla = True
    FLAGS.train_epochs = 7
Toby Boyd's avatar
Toby Boyd committed
308
    self._run_and_report_benchmark_mlperf_like()
309

Tomasz Grel's avatar
Tomasz Grel committed
310
311
312
313
314
315
316
317
318
  def benchmark_xla_1_gpu_fp16_mlperf_like(self):
    """1 GPU using with XLA and FP16."""
    self._setup()
    FLAGS.enable_xla = True
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

Nimit Nigania's avatar
Nimit Nigania committed
319
  def benchmark_xla_1_gpu_ctl_fp16_mlperf_like(self):
Tomasz Grel's avatar
Tomasz Grel committed
320
    """1 GPU using CTL with XLA and FP16."""
Nimit Nigania's avatar
Nimit Nigania committed
321
322
323
324
325
326
327
328
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.enable_xla = True
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

329
330
331
  def benchmark_8_gpu_mlperf_like(self):
    """8 GPU using keras fit/compile."""
    self._setup()
332
333
334
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
335
    FLAGS.eval_batch_size = 160000
336
337
338
339
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
Toby Boyd's avatar
Toby Boyd committed
340
    self._run_and_report_benchmark_mlperf_like()
341

342
343
344
345
346
347
348
  def benchmark_8_gpu_ctl_mlperf_like(self):
    """8 GPU using CTL."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
349
    FLAGS.eval_batch_size = 160000
350
351
352
353
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
Toby Boyd's avatar
Toby Boyd committed
354
    self._run_and_report_benchmark_mlperf_like()
355

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
356
357
358
  def benchmark_8_gpu_tf_data_ctl_mlperf_like(self):
    """8 GPU using CTL."""
    self._setup()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
359
    self._set_8_gpu_defaults()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
360
361
362
    FLAGS.keras_use_ctl = True
    self._run_and_report_benchmark_mlperf_like()

Tomasz Grel's avatar
Tomasz Grel committed
363
  def benchmark_8_gpu_tf_data_fp16_mlperf_like(self):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
364
    """8 GPU FP16."""
Tomasz Grel's avatar
Tomasz Grel committed
365
    self._setup()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
366
    self._set_8_gpu_defaults()
Tomasz Grel's avatar
Tomasz Grel committed
367
368
369
370
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
371
  def benchmark_8_gpu_tf_data_ctl_fp16_mlperf_like(self):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
372
    """8 GPU FP16 using CTL."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
373
    self._setup()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
374
    self._set_8_gpu_defaults()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
375
376
377
378
    FLAGS.keras_use_ctl = True
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()
379

380
381
382
  def benchmark_8_gpu_tf_data_ctl_fp16_graph_rewrite_mlperf_like(self):
    """8 GPU FP16 graph rewrite using CTL."""
    self._setup()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
383
    self._set_8_gpu_defaults()
384
385
386
387
388
389
390
    FLAGS.keras_use_ctl = True
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
class NCFKerasBenchmarkReal(NCFKerasBenchmarkBase):
  """NCF Keras throughput benchmarks."""

  def __init__(self,
               output_dir=None,
               root_data_dir=None,
               default_flags=None,
               **kwargs):

    root_data_dir = root_data_dir if root_data_dir else ''
    default_flags = {}
    default_flags['dataset'] = 'ml-20m'
    default_flags['num_gpus'] = 1
    default_flags['train_epochs'] = 14
    default_flags['clean'] = True
    default_flags['batch_size'] = 99000
    default_flags['eval_batch_size'] = 160000
    default_flags['learning_rate'] = 0.00382059
    default_flags['beta1'] = 0.783529
    default_flags['beta2'] = 0.909003
    default_flags['epsilon'] = 1.45439e-07
    default_flags['layers'] = [256, 256, 128, 64]
    default_flags['num_factors'] = 64
    default_flags['hr_threshold'] = 0.635
    default_flags['ml_perf'] = True
    default_flags['use_synthetic_data'] = False
    default_flags['train_dataset_path'] = os.path.join(
        NCF_TF_REGRESSION_DATA_DIR_NAME, 'training_cycle_*/*')
    default_flags['eval_dataset_path'] = os.path.join(
        NCF_TF_REGRESSION_DATA_DIR_NAME, 'eval_data/*')
    default_flags['input_meta_data_path'] = os.path.join(
        NCF_TF_REGRESSION_DATA_DIR_NAME, 'metadata')
    default_flags['data_dir'] = NCF_TF_REGRESSION_DATA_DIR_NAME

    super(NCFKerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=default_flags, **kwargs)

  def benchmark_2x2_tpu(self):
    """2x2 TPU using CTL with distribution strategy."""
    self._setup()
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.keras_use_ctl = True
    FLAGS.num_gpus = 0
    FLAGS.train_epochs = 1
    self._run_and_report_benchmark()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
437
438
439
440
441
442
443
444
445
446
447
  @owner_utils.Owner('tf-graph-compiler')
  def benchmark_2x2_tpu_mlir(self):
    """2x2 TPU using CTL with distribution strategy using the MLIR bridge."""
    self._setup()
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.keras_use_ctl = True
    FLAGS.num_gpus = 0
    FLAGS.train_epochs = 1
    tf.config.experimental.enable_mlir_bridge()
    self._run_and_report_benchmark()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
448

449
class NCFKerasSynth(NCFKerasBenchmarkBase):
450
451
452
453
454
455
456
457
458
459
  """Benchmark NCF model using synthetic data."""

  def __init__(self,
               output_dir=None,
               default_flags=None,
               **kwargs):

    default_flags = {}
    default_flags['dataset'] = 'ml-20m'
    default_flags['num_gpus'] = 1
460
461
    default_flags['train_epochs'] = 8
    default_flags['batch_size'] = 99000
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
462
    default_flags['eval_batch_size'] = 160000
463
464
465
466
467
468
469
470
471
    default_flags['learning_rate'] = 0.00382059
    default_flags['beta1'] = 0.783529
    default_flags['beta2'] = 0.909003
    default_flags['epsilon'] = 1.45439e-07
    default_flags['layers'] = [256, 256, 128, 64]
    default_flags['num_factors'] = 64
    default_flags['hr_threshold'] = 0.635
    default_flags['use_synthetic_data'] = True

472
    super(NCFKerasSynth, self).__init__(
473
474
475
476
477
478
479
        output_dir=output_dir,
        default_flags=default_flags,
        **kwargs)

  def benchmark_1_gpu(self):
    self._setup()
    self._run_and_report_benchmark()
480
481
482
483
484

  def benchmark_2_gpus(self):
    self._setup()
    FLAGS.num_gpus = 2
    self._run_and_report_benchmark()
David Chen's avatar
David Chen committed
485
486
487
488


if __name__ == '__main__':
  tf.test.main()