ncf_keras_benchmark.py 15.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time

from absl import flags
24
from absl import logging
25
from absl.testing import flagsaver
Hongkun Yu's avatar
Hongkun Yu committed
26
import tensorflow as tf
27
from official.benchmark import benchmark_wrappers
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
28
from official.benchmark.perfzero_benchmark import PerfZeroBenchmark
29
30
31
32
33
from official.recommendation import ncf_common
from official.recommendation import ncf_keras_main
from official.utils.flags import core

FLAGS = flags.FLAGS
Toby Boyd's avatar
Toby Boyd committed
34
NCF_DATA_DIR_NAME = 'movielens_data'
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
35
NCF_TF_REGRESSION_DATA_DIR_NAME = 'gs://tf-regression/ncf/data'
Toby Boyd's avatar
Toby Boyd committed
36

37

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
38
class NCFKerasBenchmarkBase(PerfZeroBenchmark):
39
40
  """Base class for NCF model benchmark."""

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
41
42
43
44
  def __init__(self, output_dir=None, default_flags=None, **kwargs):
    super(NCFKerasBenchmarkBase, self).__init__(output_dir, default_flags,
                                                **kwargs)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
45
46
    # Run all benchmarks with ml_perf flag.
    self.default_flags['ml_perf'] = True
47
48
49

  def _setup(self):
    """Sets up and resets flags before each test."""
50
    logging.set_verbosity(logging.INFO)
51
    if NCFKerasBenchmarkBase.local_flags is None:
Toby Boyd's avatar
Toby Boyd committed
52
      ncf_common.define_ncf_flags()
53
54
55
56
      # Loads flags to get defaults to then override. List cannot be empty.
      flags.FLAGS(['foo'])
      core.set_defaults(**self.default_flags)
      saved_flag_values = flagsaver.save_flag_values()
57
      NCFKerasBenchmarkBase.local_flags = saved_flag_values
58
    else:
59
      flagsaver.restore_flag_values(NCFKerasBenchmarkBase.local_flags)
60

61
  @benchmark_wrappers.enable_runtime_flags
Toby Boyd's avatar
Toby Boyd committed
62
  def _run_and_report_benchmark(self, hr_at_10_min=0, hr_at_10_max=0):
63
64
65
66
    start_time_sec = time.time()
    stats = ncf_keras_main.run_ncf(FLAGS)
    wall_time_sec = time.time() - start_time_sec

Toby Boyd's avatar
Toby Boyd committed
67
68
69
    metrics = []
    metrics.append({'name': 'exp_per_second',
                    'value': stats['avg_exp_per_second']})
70

Toby Boyd's avatar
Toby Boyd committed
71
72
73
74
75
76
77
78
79
80
    if hr_at_10_min > 0:
      metrics.append({'name': 'hr_at_10',
                      'value': stats['eval_hit_rate'],
                      'min_value': hr_at_10_min,
                      'max_value': hr_at_10_max})

      metrics.append({'name': 'train_loss',
                      'value': stats['loss']})

    self.report_benchmark(iters=-1, wall_time=wall_time_sec, metrics=metrics)
81
82


83
class NCFKerasAccuracy(NCFKerasBenchmarkBase):
84
85
86
87
  """Benchmark NCF model using real data."""

  def __init__(self,
               output_dir=None,
Toby Boyd's avatar
Toby Boyd committed
88
               root_data_dir=None,
89
90
               default_flags=None,
               **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
91
    root_data_dir = root_data_dir if root_data_dir else ''
92
93
94
    default_flags = {}
    default_flags['dataset'] = 'ml-20m'
    default_flags['num_gpus'] = 1
95
    default_flags['train_epochs'] = 10
96
    default_flags['clean'] = True
97
    default_flags['batch_size'] = 99000
98
99
100
101
102
103
104
    default_flags['learning_rate'] = 0.00382059
    default_flags['beta1'] = 0.783529
    default_flags['beta2'] = 0.909003
    default_flags['epsilon'] = 1.45439e-07
    default_flags['layers'] = [256, 256, 128, 64]
    default_flags['num_factors'] = 64
    default_flags['hr_threshold'] = 0.635
105
    default_flags['ml_perf'] = True
106
    default_flags['use_synthetic_data'] = False
Toby Boyd's avatar
Toby Boyd committed
107
    default_flags['data_dir'] = os.path.join(root_data_dir, NCF_DATA_DIR_NAME)
108

109
    super(NCFKerasAccuracy, self).__init__(
110
111
112
113
        output_dir=output_dir,
        default_flags=default_flags,
        **kwargs)

Toby Boyd's avatar
Toby Boyd committed
114
115
  def _run_and_report_benchmark_mlperf_like(self):
    """Run test and report results.
Toby Boyd's avatar
Toby Boyd committed
116

Toby Boyd's avatar
Toby Boyd committed
117
118
119
    Note: MLPerf like tests are not tuned to hit a specific hr@10 value, but
    we want it recorded.
    """
120
    self._run_and_report_benchmark(hr_at_10_min=0.61)
Toby Boyd's avatar
Toby Boyd committed
121

122
  def _run_and_report_benchmark(self, hr_at_10_min=0.630, hr_at_10_max=0.645):
Toby Boyd's avatar
Toby Boyd committed
123
    """Run test and report results.
Toby Boyd's avatar
Toby Boyd committed
124

Toby Boyd's avatar
Toby Boyd committed
125
126
127
128
129
130
131
132
    Note: Target is 0.635, but some runs are below that level. Until we have
    multi-run tests, we have to accept a lower target.

    Args:
      hr_at_10_min: Minimum acceptable hr@10 value.
      hr_at_10_max: Maximum acceptable hr@10 value.
    """
    super(NCFKerasAccuracy, self)._run_and_report_benchmark(
133
134
        hr_at_10_min=hr_at_10_min,
        hr_at_10_max=hr_at_10_max)
135

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
  def _set_8_gpu_defaults(self):
    FLAGS.num_gpus = 8
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
    FLAGS.train_epochs = 14
    FLAGS.batch_size = 99000
    FLAGS.eval_batch_size = 160000
    FLAGS.train_dataset_path = os.path.join(NCF_TF_REGRESSION_DATA_DIR_NAME,
                                            'training_cycle_*/*')
    FLAGS.eval_dataset_path = os.path.join(NCF_TF_REGRESSION_DATA_DIR_NAME,
                                           'eval_data/*')
    FLAGS.input_meta_data_path = os.path.join(NCF_TF_REGRESSION_DATA_DIR_NAME,
                                              'metadata')
    FLAGS.data_dir = NCF_TF_REGRESSION_DATA_DIR_NAME

153
  def benchmark_1_gpu_early_stop(self):
154
    self._setup()
155
    FLAGS.early_stopping = True
156
157
    self._run_and_report_benchmark()

158
159
160
161
162
163
  def benchmark_1_gpu_no_dist_strat_early_stop(self):
    self._setup()
    FLAGS.distribution_strategy = 'off'
    FLAGS.early_stopping = True
    self._run_and_report_benchmark()

164
165
166
167
168
169
170
171
172
173
174
175
176
  def benchmark_1_gpu_no_dist_strat_run_eagerly_early_stop(self):
    self._setup()
    FLAGS.distribution_strategy = 'off'
    FLAGS.early_stopping = True
    FLAGS.run_eagerly = True
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_early_stop(self):
    self._setup()
    FLAGS.early_stopping = True
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

177
178
179
180
181
182
  def benchmark_1_gpu_ctl_early_stop(self):
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    self._run_and_report_benchmark()

183
184
185
186
187
188
189
  def benchmark_1_gpu_ctl_run_eagerly_early_stop(self):
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    FLAGS.run_eagerly = True
    self._run_and_report_benchmark()

190
191
192
193
194
195
196
  def benchmark_xla_1_gpu_ctl_early_stop(self):
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

197
198
199
200
  def benchmark_2_gpus_early_stop(self):
    self._setup()
    FLAGS.early_stopping = True
    FLAGS.num_gpus = 2
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
201
    FLAGS.eval_batch_size = 160000
202
    self._run_and_report_benchmark()
203

204
  def benchmark_2_gpus_ctl_early_stop(self):
205
    """NCF with custom training loop. Works only in TF 2.0."""
206
207
208
209
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.early_stopping = True
    FLAGS.num_gpus = 2
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
210
    FLAGS.eval_batch_size = 160000
211
212
    self._run_and_report_benchmark()

213
#############################################
214
# Tests below with mlperf in the test name are of two types:
215
216
217
218
219
220
221
#  1) 1 GPU tests are based on MLPerf 0.5 and the TensorFlow pulled submission.
#  2) 8 GPU tests are based on MLPerf 0.5 and use NVIDIA's hyper parameters.
#
# The purpose of both is to get a number to compare to existing results. To do
# this the number of epochs is held constant rather than a race to a given
# accuracy. The accuracy validation is done by the "early_stop" tests.
#############################################
222
223

  def benchmark_1_gpu_mlperf_like(self):
224
    """1 GPU using keras fit/compile."""
225
226
    self._setup()
    FLAGS.train_epochs = 7
Toby Boyd's avatar
Toby Boyd committed
227
    self._run_and_report_benchmark_mlperf_like()
228
229

  def benchmark_1_gpu_no_dist_strat_mlperf_like(self):
230
    """1 GPU using compile/fit without dist_strat."""
231
232
233
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.distribution_strategy = 'off'
Toby Boyd's avatar
Toby Boyd committed
234
    self._run_and_report_benchmark_mlperf_like()
235
236
237
238
239
240

  def benchmark_1_gpu_no_dist_strat_run_eagerly_mlperf_like(self):
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.distribution_strategy = 'off'
    FLAGS.run_eagerly = True
Toby Boyd's avatar
Toby Boyd committed
241
    self._run_and_report_benchmark_mlperf_like()
242
243

  def benchmark_xla_1_gpu_mlperf_like(self):
244
    """1 GPU using compile/fit with XLA."""
245
246
    self._setup()
    FLAGS.train_epochs = 7
247
    FLAGS.enable_xla = True
Toby Boyd's avatar
Toby Boyd committed
248
    self._run_and_report_benchmark_mlperf_like()
249

250
251
252
253
254
  def benchmark_1_gpu_ctl_mlperf_like(self):
    """1 GPU using CTL."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.train_epochs = 7
Toby Boyd's avatar
Toby Boyd committed
255
    self._run_and_report_benchmark_mlperf_like()
256

Nimit Nigania's avatar
Nimit Nigania committed
257
  def benchmark_1_gpu_ctl_fp16_mlperf_like(self):
Tomasz Grel's avatar
Tomasz Grel committed
258
    """1 GPU using CTL and FP16."""
Nimit Nigania's avatar
Nimit Nigania committed
259
260
261
262
263
264
265
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

Tomasz Grel's avatar
Tomasz Grel committed
266
267
268
269
270
271
272
273
  def benchmark_1_gpu_fp16_mlperf_like(self):
    """1 GPU using FP16."""
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
  def benchmark_1_gpu_ctl_fp16_graph_rewrite_mlperf_like(self):
    """1 GPU using CTL and FP16 graph rewrite."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

  def benchmark_1_gpu_fp16_graph_rewrite_mlperf_like(self):
    """1 GPU using FP16 graph rewrite."""
    self._setup()
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

293
294
295
296
297
298
299
300
  def benchmark_1_gpu_ctl_run_eagerly_mlperf_like(self):
    """1 GPU using CTL with eager and distribution strategy."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.run_eagerly = True
    FLAGS.train_epochs = 7
    self._run_and_report_benchmark()

301
302
  def benchmark_xla_1_gpu_ctl_mlperf_like(self):
    """1 GPU using CTL with XLA."""
303
304
    self._setup()
    FLAGS.keras_use_ctl = True
305
306
    FLAGS.enable_xla = True
    FLAGS.train_epochs = 7
Toby Boyd's avatar
Toby Boyd committed
307
    self._run_and_report_benchmark_mlperf_like()
308

Tomasz Grel's avatar
Tomasz Grel committed
309
310
311
312
313
314
315
316
317
  def benchmark_xla_1_gpu_fp16_mlperf_like(self):
    """1 GPU using with XLA and FP16."""
    self._setup()
    FLAGS.enable_xla = True
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

Nimit Nigania's avatar
Nimit Nigania committed
318
  def benchmark_xla_1_gpu_ctl_fp16_mlperf_like(self):
Tomasz Grel's avatar
Tomasz Grel committed
319
    """1 GPU using CTL with XLA and FP16."""
Nimit Nigania's avatar
Nimit Nigania committed
320
321
322
323
324
325
326
327
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.enable_xla = True
    FLAGS.train_epochs = 7
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

328
329
330
  def benchmark_8_gpu_mlperf_like(self):
    """8 GPU using keras fit/compile."""
    self._setup()
331
332
333
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
334
    FLAGS.eval_batch_size = 160000
335
336
337
338
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
Toby Boyd's avatar
Toby Boyd committed
339
    self._run_and_report_benchmark_mlperf_like()
340

341
342
343
344
345
346
347
  def benchmark_8_gpu_ctl_mlperf_like(self):
    """8 GPU using CTL."""
    self._setup()
    FLAGS.keras_use_ctl = True
    FLAGS.num_gpus = 8
    FLAGS.train_epochs = 17
    FLAGS.batch_size = 1048576
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
348
    FLAGS.eval_batch_size = 160000
349
350
351
352
    FLAGS.learning_rate = 0.0045
    FLAGS.beta1 = 0.25
    FLAGS.beta2 = 0.5
    FLAGS.epsilon = 1e-8
Toby Boyd's avatar
Toby Boyd committed
353
    self._run_and_report_benchmark_mlperf_like()
354

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
355
356
357
  def benchmark_8_gpu_tf_data_ctl_mlperf_like(self):
    """8 GPU using CTL."""
    self._setup()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
358
    self._set_8_gpu_defaults()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
359
360
361
    FLAGS.keras_use_ctl = True
    self._run_and_report_benchmark_mlperf_like()

Tomasz Grel's avatar
Tomasz Grel committed
362
  def benchmark_8_gpu_tf_data_fp16_mlperf_like(self):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
363
    """8 GPU FP16."""
Tomasz Grel's avatar
Tomasz Grel committed
364
    self._setup()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
365
    self._set_8_gpu_defaults()
Tomasz Grel's avatar
Tomasz Grel committed
366
367
368
369
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
370
  def benchmark_8_gpu_tf_data_ctl_fp16_mlperf_like(self):
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
371
    """8 GPU FP16 using CTL."""
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
372
    self._setup()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
373
    self._set_8_gpu_defaults()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
374
375
376
377
    FLAGS.keras_use_ctl = True
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()
378

379
380
381
  def benchmark_8_gpu_tf_data_ctl_fp16_graph_rewrite_mlperf_like(self):
    """8 GPU FP16 graph rewrite using CTL."""
    self._setup()
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
382
    self._set_8_gpu_defaults()
383
384
385
386
387
388
389
    FLAGS.keras_use_ctl = True
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.loss_scale = 8192
    self._run_and_report_benchmark_mlperf_like()


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
class NCFKerasBenchmarkReal(NCFKerasBenchmarkBase):
  """NCF Keras throughput benchmarks."""

  def __init__(self,
               output_dir=None,
               root_data_dir=None,
               default_flags=None,
               **kwargs):

    root_data_dir = root_data_dir if root_data_dir else ''
    default_flags = {}
    default_flags['dataset'] = 'ml-20m'
    default_flags['num_gpus'] = 1
    default_flags['train_epochs'] = 14
    default_flags['clean'] = True
    default_flags['batch_size'] = 99000
    default_flags['eval_batch_size'] = 160000
    default_flags['learning_rate'] = 0.00382059
    default_flags['beta1'] = 0.783529
    default_flags['beta2'] = 0.909003
    default_flags['epsilon'] = 1.45439e-07
    default_flags['layers'] = [256, 256, 128, 64]
    default_flags['num_factors'] = 64
    default_flags['hr_threshold'] = 0.635
    default_flags['ml_perf'] = True
    default_flags['use_synthetic_data'] = False
    default_flags['train_dataset_path'] = os.path.join(
        NCF_TF_REGRESSION_DATA_DIR_NAME, 'training_cycle_*/*')
    default_flags['eval_dataset_path'] = os.path.join(
        NCF_TF_REGRESSION_DATA_DIR_NAME, 'eval_data/*')
    default_flags['input_meta_data_path'] = os.path.join(
        NCF_TF_REGRESSION_DATA_DIR_NAME, 'metadata')
    default_flags['data_dir'] = NCF_TF_REGRESSION_DATA_DIR_NAME

    super(NCFKerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=default_flags, **kwargs)

  def benchmark_2x2_tpu(self):
    """2x2 TPU using CTL with distribution strategy."""
    self._setup()
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.keras_use_ctl = True
    FLAGS.num_gpus = 0
    FLAGS.train_epochs = 1
    self._run_and_report_benchmark()


437
class NCFKerasSynth(NCFKerasBenchmarkBase):
438
439
440
441
442
443
444
445
446
447
  """Benchmark NCF model using synthetic data."""

  def __init__(self,
               output_dir=None,
               default_flags=None,
               **kwargs):

    default_flags = {}
    default_flags['dataset'] = 'ml-20m'
    default_flags['num_gpus'] = 1
448
449
    default_flags['train_epochs'] = 8
    default_flags['batch_size'] = 99000
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
450
    default_flags['eval_batch_size'] = 160000
451
452
453
454
455
456
457
458
459
    default_flags['learning_rate'] = 0.00382059
    default_flags['beta1'] = 0.783529
    default_flags['beta2'] = 0.909003
    default_flags['epsilon'] = 1.45439e-07
    default_flags['layers'] = [256, 256, 128, 64]
    default_flags['num_factors'] = 64
    default_flags['hr_threshold'] = 0.635
    default_flags['use_synthetic_data'] = True

460
    super(NCFKerasSynth, self).__init__(
461
462
463
464
465
466
467
        output_dir=output_dir,
        default_flags=default_flags,
        **kwargs)

  def benchmark_1_gpu(self):
    self._setup()
    self._run_and_report_benchmark()
468
469
470
471
472

  def benchmark_2_gpus(self):
    self._setup()
    FLAGS.num_gpus = 2
    self._run_and_report_benchmark()
David Chen's avatar
David Chen committed
473
474
475
476


if __name__ == '__main__':
  tf.test.main()