"docs/import.mdx" did not exist on "1713eddcd05e4c234108511f6fc1470c383e21b2"
model_lib.py 41.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
r"""Constructs model, inputs, and training environment."""
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
import copy
22
import functools
23
import os
24

25
import tensorflow.compat.v1 as tf
26
import tensorflow.compat.v2 as tf2
27
28
import tf_slim as slim

29
from object_detection import eval_util
30
from object_detection import exporter as exporter_lib
31
from object_detection import inputs
32
from object_detection.builders import graph_rewriter_builder
33
34
35
36
37
from object_detection.builders import model_builder
from object_detection.builders import optimizer_builder
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
from object_detection.utils import label_map_util
38
from object_detection.utils import ops
39
40
41
42
from object_detection.utils import shape_utils
from object_detection.utils import variables_helper
from object_detection.utils import visualization_utils as vis_utils

43
44
45
46
47
48
49
50
51
# pylint: disable=g-import-not-at-top
try:
  from tensorflow.contrib import learn as contrib_learn
  from tensorflow.contrib import tpu as contrib_tpu
except ImportError:
  # TF 2.0 doesn't ship with contrib.
  pass
# pylint: enable=g-import-not-at-top

52
53
54
55
56
57
58
59
# A map of names to methods that help build the model.
MODEL_BUILD_UTIL_MAP = {
    'get_configs_from_pipeline_file':
        config_util.get_configs_from_pipeline_file,
    'create_pipeline_proto_from_configs':
        config_util.create_pipeline_proto_from_configs,
    'merge_external_params_with_configs':
        config_util.merge_external_params_with_configs,
60
61
62
63
64
65
    'create_train_input_fn':
        inputs.create_train_input_fn,
    'create_eval_input_fn':
        inputs.create_eval_input_fn,
    'create_predict_input_fn':
        inputs.create_predict_input_fn,
66
    'detection_model_fn_base': model_builder.build,
67
68
69
}


70
71
def _prepare_groundtruth_for_eval(detection_model, class_agnostic,
                                  max_number_of_boxes):
72
  """Extracts groundtruth data from detection_model and prepares it for eval.
73
74
75
76

  Args:
    detection_model: A `DetectionModel` object.
    class_agnostic: Whether the detections are class_agnostic.
77
    max_number_of_boxes: Max number of groundtruth boxes.
78
79
80
81

  Returns:
    A tuple of:
    groundtruth: Dictionary with the following fields:
82
83
84
85
86
      'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes,
        in normalized coordinates.
      'groundtruth_classes': [batch_size, num_boxes] int64 tensor of 1-indexed
        classes.
      'groundtruth_masks': 4D float32 tensor of instance masks (if provided in
87
        groundtruth)
88
89
      'groundtruth_is_crowd': [batch_size, num_boxes] bool tensor indicating
        is_crowd annotations (if provided in groundtruth).
90
91
92
      'groundtruth_area': [batch_size, num_boxes] float32 tensor indicating
        the area (in the original absolute coordinates) of annotations (if
        provided in groundtruth).
93
94
      'num_groundtruth_boxes': [batch_size] tensor containing the maximum number
        of groundtruth boxes per image..
95
96
      'groundtruth_keypoints': [batch_size, num_boxes, num_keypoints, 2] float32
        tensor of keypoints (if provided in groundtruth).
97
98
99
100
      'groundtruth_group_of': [batch_size, num_boxes] bool tensor indicating
        group_of annotations (if provided in groundtruth).
      'groundtruth_labeled_classes': [batch_size, num_classes] int64
        tensor of 1-indexed classes.
101
102
103
    class_agnostic: Boolean indicating whether detections are class agnostic.
  """
  input_data_fields = fields.InputDataFields()
104
105
106
  groundtruth_boxes = tf.stack(
      detection_model.groundtruth_lists(fields.BoxListFields.boxes))
  groundtruth_boxes_shape = tf.shape(groundtruth_boxes)
107
108
109
  # For class-agnostic models, groundtruth one-hot encodings collapse to all
  # ones.
  if class_agnostic:
110
111
    groundtruth_classes_one_hot = tf.ones(
        [groundtruth_boxes_shape[0], groundtruth_boxes_shape[1], 1])
112
  else:
113
114
    groundtruth_classes_one_hot = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.classes))
115
116
  label_id_offset = 1  # Applying label id offset (b/63711816)
  groundtruth_classes = (
117
      tf.argmax(groundtruth_classes_one_hot, axis=2) + label_id_offset)
118
119
120
121
122
  groundtruth = {
      input_data_fields.groundtruth_boxes: groundtruth_boxes,
      input_data_fields.groundtruth_classes: groundtruth_classes
  }
  if detection_model.groundtruth_has_field(fields.BoxListFields.masks):
123
124
125
    groundtruth[input_data_fields.groundtruth_instance_masks] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.masks))

126
  if detection_model.groundtruth_has_field(fields.BoxListFields.is_crowd):
127
128
129
    groundtruth[input_data_fields.groundtruth_is_crowd] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.is_crowd))

130
131
132
133
134
135
136
137
138
139
140
141
142
143
  if detection_model.groundtruth_has_field(input_data_fields.groundtruth_area):
    groundtruth[input_data_fields.groundtruth_area] = tf.stack(
        detection_model.groundtruth_lists(input_data_fields.groundtruth_area))

  if detection_model.groundtruth_has_field(fields.BoxListFields.keypoints):
    groundtruth[input_data_fields.groundtruth_keypoints] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.keypoints))

  if detection_model.groundtruth_has_field(
      fields.BoxListFields.keypoint_visibilities):
    groundtruth[input_data_fields.groundtruth_keypoint_visibilities] = tf.stack(
        detection_model.groundtruth_lists(
            fields.BoxListFields.keypoint_visibilities))

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
  if detection_model.groundtruth_has_field(fields.BoxListFields.group_of):
    groundtruth[input_data_fields.groundtruth_group_of] = tf.stack(
        detection_model.groundtruth_lists(fields.BoxListFields.group_of))

  if detection_model.groundtruth_has_field(
      fields.InputDataFields.groundtruth_labeled_classes):
    labeled_classes_list = detection_model.groundtruth_lists(
        fields.InputDataFields.groundtruth_labeled_classes)
    labeled_classes = [
        tf.where(x)[:, 0] + label_id_offset for x in labeled_classes_list
    ]
    if len(labeled_classes) > 1:
      num_classes = labeled_classes_list[0].shape[0]
      padded_labeled_classes = []
      for x in labeled_classes:
        padding = num_classes - tf.shape(x)[0]
        padded_labeled_classes.append(tf.pad(x, [[0, padding]]))
      groundtruth[input_data_fields.groundtruth_labeled_classes] = tf.stack(
          padded_labeled_classes)
    else:
      groundtruth[input_data_fields.groundtruth_labeled_classes] = tf.stack(
          labeled_classes)

167
168
  groundtruth[input_data_fields.num_groundtruth_boxes] = (
      tf.tile([max_number_of_boxes], multiples=[groundtruth_boxes_shape[0]]))
169
170
171
172
173
174
175
  return groundtruth


def unstack_batch(tensor_dict, unpad_groundtruth_tensors=True):
  """Unstacks all tensors in `tensor_dict` along 0th dimension.

  Unstacks tensor from the tensor dict along 0th dimension and returns a
176
  tensor_dict containing values that are lists of unstacked, unpadded tensors.
177
178
179
180
181
182

  Tensors in the `tensor_dict` are expected to be of one of the three shapes:
  1. [batch_size]
  2. [batch_size, height, width, channels]
  3. [batch_size, num_boxes, d1, d2, ... dn]

183
184
  When unpad_groundtruth_tensors is set to true, unstacked tensors of form 3
  above are sliced along the `num_boxes` dimension using the value in tensor
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
  field.InputDataFields.num_groundtruth_boxes.

  Note that this function has a static list of input data fields and has to be
  kept in sync with the InputDataFields defined in core/standard_fields.py

  Args:
    tensor_dict: A dictionary of batched groundtruth tensors.
    unpad_groundtruth_tensors: Whether to remove padding along `num_boxes`
      dimension of the groundtruth tensors.

  Returns:
    A dictionary where the keys are from fields.InputDataFields and values are
    a list of unstacked (optionally unpadded) tensors.

  Raises:
    ValueError: If unpad_tensors is True and `tensor_dict` does not contain
      `num_groundtruth_boxes` tensor.
  """
203
204
205
  unbatched_tensor_dict = {
      key: tf.unstack(tensor) for key, tensor in tensor_dict.items()
  }
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
  if unpad_groundtruth_tensors:
    if (fields.InputDataFields.num_groundtruth_boxes not in
        unbatched_tensor_dict):
      raise ValueError('`num_groundtruth_boxes` not found in tensor_dict. '
                       'Keys available: {}'.format(
                           unbatched_tensor_dict.keys()))
    unbatched_unpadded_tensor_dict = {}
    unpad_keys = set([
        # List of input data fields that are padded along the num_boxes
        # dimension. This list has to be kept in sync with InputDataFields in
        # standard_fields.py.
        fields.InputDataFields.groundtruth_instance_masks,
        fields.InputDataFields.groundtruth_classes,
        fields.InputDataFields.groundtruth_boxes,
        fields.InputDataFields.groundtruth_keypoints,
221
        fields.InputDataFields.groundtruth_keypoint_visibilities,
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        fields.InputDataFields.groundtruth_group_of,
        fields.InputDataFields.groundtruth_difficult,
        fields.InputDataFields.groundtruth_is_crowd,
        fields.InputDataFields.groundtruth_area,
        fields.InputDataFields.groundtruth_weights
    ]).intersection(set(unbatched_tensor_dict.keys()))

    for key in unpad_keys:
      unpadded_tensor_list = []
      for num_gt, padded_tensor in zip(
          unbatched_tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
          unbatched_tensor_dict[key]):
        tensor_shape = shape_utils.combined_static_and_dynamic_shape(
            padded_tensor)
        slice_begin = tf.zeros([len(tensor_shape)], dtype=tf.int32)
        slice_size = tf.stack(
            [num_gt] + [-1 if dim is None else dim for dim in tensor_shape[1:]])
        unpadded_tensor = tf.slice(padded_tensor, slice_begin, slice_size)
        unpadded_tensor_list.append(unpadded_tensor)
      unbatched_unpadded_tensor_dict[key] = unpadded_tensor_list
242

243
244
245
246
247
    unbatched_tensor_dict.update(unbatched_unpadded_tensor_dict)

  return unbatched_tensor_dict


pkulzc's avatar
pkulzc committed
248
def provide_groundtruth(model, labels):
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
  """Provides the labels to a model as groundtruth.

  This helper function extracts the corresponding boxes, classes,
  keypoints, weights, masks, etc. from the labels, and provides it
  as groundtruth to the models.

  Args:
    model: The detection model to provide groundtruth to.
    labels: The labels for the training or evaluation inputs.
  """
  gt_boxes_list = labels[fields.InputDataFields.groundtruth_boxes]
  gt_classes_list = labels[fields.InputDataFields.groundtruth_classes]
  gt_masks_list = None
  if fields.InputDataFields.groundtruth_instance_masks in labels:
    gt_masks_list = labels[
        fields.InputDataFields.groundtruth_instance_masks]
  gt_keypoints_list = None
  if fields.InputDataFields.groundtruth_keypoints in labels:
    gt_keypoints_list = labels[fields.InputDataFields.groundtruth_keypoints]
268
269
270
271
  gt_keypoint_visibilities_list = None
  if fields.InputDataFields.groundtruth_keypoint_visibilities in labels:
    gt_keypoint_visibilities_list = labels[
        fields.InputDataFields.groundtruth_keypoint_visibilities]
272
273
274
275
276
277
278
279
280
281
  gt_weights_list = None
  if fields.InputDataFields.groundtruth_weights in labels:
    gt_weights_list = labels[fields.InputDataFields.groundtruth_weights]
  gt_confidences_list = None
  if fields.InputDataFields.groundtruth_confidences in labels:
    gt_confidences_list = labels[
        fields.InputDataFields.groundtruth_confidences]
  gt_is_crowd_list = None
  if fields.InputDataFields.groundtruth_is_crowd in labels:
    gt_is_crowd_list = labels[fields.InputDataFields.groundtruth_is_crowd]
282
283
284
  gt_group_of_list = None
  if fields.InputDataFields.groundtruth_group_of in labels:
    gt_group_of_list = labels[fields.InputDataFields.groundtruth_group_of]
285
286
287
288
289
290
291
  gt_area_list = None
  if fields.InputDataFields.groundtruth_area in labels:
    gt_area_list = labels[fields.InputDataFields.groundtruth_area]
  gt_labeled_classes = None
  if fields.InputDataFields.groundtruth_labeled_classes in labels:
    gt_labeled_classes = labels[
        fields.InputDataFields.groundtruth_labeled_classes]
292
293
294
295
  model.provide_groundtruth(
      groundtruth_boxes_list=gt_boxes_list,
      groundtruth_classes_list=gt_classes_list,
      groundtruth_confidences_list=gt_confidences_list,
296
      groundtruth_labeled_classes=gt_labeled_classes,
297
298
      groundtruth_masks_list=gt_masks_list,
      groundtruth_keypoints_list=gt_keypoints_list,
299
      groundtruth_keypoint_visibilities_list=gt_keypoint_visibilities_list,
300
      groundtruth_weights_list=gt_weights_list,
301
      groundtruth_is_crowd_list=gt_is_crowd_list,
302
      groundtruth_group_of_list=gt_group_of_list,
303
      groundtruth_area_list=gt_area_list)
304
305


306
307
def create_model_fn(detection_model_fn, configs, hparams, use_tpu=False,
                    postprocess_on_cpu=False):
308
309
310
311
312
313
314
315
  """Creates a model function for `Estimator`.

  Args:
    detection_model_fn: Function that returns a `DetectionModel` instance.
    configs: Dictionary of pipeline config objects.
    hparams: `HParams` object.
    use_tpu: Boolean indicating whether model should be constructed for
        use on TPU.
316
317
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu is true, postprocess
        is scheduled on the host cpu.
318
319
320
321
322
323

  Returns:
    `model_fn` for `Estimator`.
  """
  train_config = configs['train_config']
  eval_input_config = configs['eval_input_config']
324
  eval_config = configs['eval_config']
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

  def model_fn(features, labels, mode, params=None):
    """Constructs the object detection model.

    Args:
      features: Dictionary of feature tensors, returned from `input_fn`.
      labels: Dictionary of groundtruth tensors if mode is TRAIN or EVAL,
        otherwise None.
      mode: Mode key from tf.estimator.ModeKeys.
      params: Parameter dictionary passed from the estimator.

    Returns:
      An `EstimatorSpec` that encapsulates the model and its serving
        configurations.
    """
    params = params or {}
    total_loss, train_op, detections, export_outputs = None, None, None, None
    is_training = mode == tf.estimator.ModeKeys.TRAIN
343
344
345
346

    # Make sure to set the Keras learning phase. True during training,
    # False for inference.
    tf.keras.backend.set_learning_phase(is_training)
347
348
349
350
351
    # Set policy for mixed-precision training with Keras-based models.
    if use_tpu and train_config.use_bfloat16:
      from tensorflow.python.keras.engine import base_layer_utils  # pylint: disable=g-import-not-at-top
      # Enable v2 behavior, as `mixed_bfloat16` is only supported in TF 2.0.
      base_layer_utils.enable_v2_dtype_behavior()
352
      tf2.keras.mixed_precision.experimental.set_policy(
353
          'mixed_bfloat16')
354
355
    detection_model = detection_model_fn(
        is_training=is_training, add_summaries=(not use_tpu))
356
357
358
359
360
361
362
    scaffold_fn = None

    if mode == tf.estimator.ModeKeys.TRAIN:
      labels = unstack_batch(
          labels,
          unpad_groundtruth_tensors=train_config.unpad_groundtruth_tensors)
    elif mode == tf.estimator.ModeKeys.EVAL:
363
364
365
366
367
      # For evaling on train data, it is necessary to check whether groundtruth
      # must be unpadded.
      boxes_shape = (
          labels[fields.InputDataFields.groundtruth_boxes].get_shape()
          .as_list())
368
      unpad_groundtruth_tensors = boxes_shape[1] is not None and not use_tpu
369
370
      labels = unstack_batch(
          labels, unpad_groundtruth_tensors=unpad_groundtruth_tensors)
371
372

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
pkulzc's avatar
pkulzc committed
373
      provide_groundtruth(detection_model, labels)
374
375

    preprocessed_images = features[fields.InputDataFields.image]
376
377
378

    side_inputs = detection_model.get_side_inputs(features)

379
    if use_tpu and train_config.use_bfloat16:
380
      with contrib_tpu.bfloat16_scope():
381
382
        prediction_dict = detection_model.predict(
            preprocessed_images,
383
            features[fields.InputDataFields.true_image_shape], **side_inputs)
384
        prediction_dict = ops.bfloat16_to_float32_nested(prediction_dict)
385
386
387
    else:
      prediction_dict = detection_model.predict(
          preprocessed_images,
388
          features[fields.InputDataFields.true_image_shape], **side_inputs)
389
390
391
392

    def postprocess_wrapper(args):
      return detection_model.postprocess(args[0], args[1])

393
    if mode in (tf.estimator.ModeKeys.EVAL, tf.estimator.ModeKeys.PREDICT):
394
      if use_tpu and postprocess_on_cpu:
395
        detections = contrib_tpu.outside_compilation(
396
397
398
399
400
401
402
            postprocess_wrapper,
            (prediction_dict,
             features[fields.InputDataFields.true_image_shape]))
      else:
        detections = postprocess_wrapper((
            prediction_dict,
            features[fields.InputDataFields.true_image_shape]))
403
404

    if mode == tf.estimator.ModeKeys.TRAIN:
405
406
      load_pretrained = hparams.load_pretrained if hparams else False
      if train_config.fine_tune_checkpoint and load_pretrained:
407
408
409
410
411
412
413
414
        if not train_config.fine_tune_checkpoint_type:
          # train_config.from_detection_checkpoint field is deprecated. For
          # backward compatibility, set train_config.fine_tune_checkpoint_type
          # based on train_config.from_detection_checkpoint.
          if train_config.from_detection_checkpoint:
            train_config.fine_tune_checkpoint_type = 'detection'
          else:
            train_config.fine_tune_checkpoint_type = 'classification'
415
        asg_map = detection_model.restore_map(
416
            fine_tune_checkpoint_type=train_config.fine_tune_checkpoint_type,
417
418
419
420
            load_all_detection_checkpoint_vars=(
                train_config.load_all_detection_checkpoint_vars))
        available_var_map = (
            variables_helper.get_variables_available_in_checkpoint(
421
422
                asg_map,
                train_config.fine_tune_checkpoint,
423
424
                include_global_step=False))
        if use_tpu:
425

426
427
428
429
          def tpu_scaffold():
            tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                          available_var_map)
            return tf.train.Scaffold()
430

431
432
433
434
435
436
          scaffold_fn = tpu_scaffold
        else:
          tf.train.init_from_checkpoint(train_config.fine_tune_checkpoint,
                                        available_var_map)

    if mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL):
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
      if (mode == tf.estimator.ModeKeys.EVAL and
          eval_config.use_dummy_loss_in_eval):
        total_loss = tf.constant(1.0)
        losses_dict = {'Loss/total_loss': total_loss}
      else:
        losses_dict = detection_model.loss(
            prediction_dict, features[fields.InputDataFields.true_image_shape])
        losses = [loss_tensor for loss_tensor in losses_dict.values()]
        if train_config.add_regularization_loss:
          regularization_losses = detection_model.regularization_losses()
          if use_tpu and train_config.use_bfloat16:
            regularization_losses = ops.bfloat16_to_float32_nested(
                regularization_losses)
          if regularization_losses:
            regularization_loss = tf.add_n(
                regularization_losses, name='regularization_loss')
            losses.append(regularization_loss)
            losses_dict['Loss/regularization_loss'] = regularization_loss
        total_loss = tf.add_n(losses, name='total_loss')
        losses_dict['Loss/total_loss'] = total_loss
457

458
459
460
461
462
      if 'graph_rewriter_config' in configs:
        graph_rewriter_fn = graph_rewriter_builder.build(
            configs['graph_rewriter_config'], is_training=is_training)
        graph_rewriter_fn()

463
464
      # TODO(rathodv): Stop creating optimizer summary vars in EVAL mode once we
      # can write learning rate summaries on TPU without host calls.
465
466
467
468
      global_step = tf.train.get_or_create_global_step()
      training_optimizer, optimizer_summary_vars = optimizer_builder.build(
          train_config.optimizer)

469
    if mode == tf.estimator.ModeKeys.TRAIN:
470
      if use_tpu:
471
        training_optimizer = contrib_tpu.CrossShardOptimizer(training_optimizer)
472
473
474

      # Optionally freeze some layers by setting their gradients to be zero.
      trainable_variables = None
475
476
477
478
479
480
      include_variables = (
          train_config.update_trainable_variables
          if train_config.update_trainable_variables else None)
      exclude_variables = (
          train_config.freeze_variables
          if train_config.freeze_variables else None)
481
      trainable_variables = slim.filter_variables(
482
483
484
          tf.trainable_variables(),
          include_patterns=include_variables,
          exclude_patterns=exclude_variables)
485
486
487
488
489
490
491
492
493

      clip_gradients_value = None
      if train_config.gradient_clipping_by_norm > 0:
        clip_gradients_value = train_config.gradient_clipping_by_norm

      if not use_tpu:
        for var in optimizer_summary_vars:
          tf.summary.scalar(var.op.name, var)
      summaries = [] if use_tpu else None
494
495
      if train_config.summarize_gradients:
        summaries = ['gradients', 'gradient_norm', 'global_gradient_norm']
496
      train_op = slim.optimizers.optimize_loss(
497
498
499
500
501
          loss=total_loss,
          global_step=global_step,
          learning_rate=None,
          clip_gradients=clip_gradients_value,
          optimizer=training_optimizer,
502
          update_ops=detection_model.updates(),
503
504
505
506
507
          variables=trainable_variables,
          summaries=summaries,
          name='')  # Preventing scope prefix on all variables.

    if mode == tf.estimator.ModeKeys.PREDICT:
508
      exported_output = exporter_lib.add_output_tensor_nodes(detections)
509
510
      export_outputs = {
          tf.saved_model.signature_constants.PREDICT_METHOD_NAME:
511
              tf.estimator.export.PredictOutput(exported_output)
512
513
514
      }

    eval_metric_ops = None
515
    scaffold = None
516
    if mode == tf.estimator.ModeKeys.EVAL:
517
518
      class_agnostic = (
          fields.DetectionResultFields.detection_classes not in detections)
519
520
521
      groundtruth = _prepare_groundtruth_for_eval(
          detection_model, class_agnostic,
          eval_input_config.max_number_of_boxes)
522
      use_original_images = fields.InputDataFields.original_image in features
pkulzc's avatar
pkulzc committed
523
      if use_original_images:
524
525
526
527
528
        eval_images = features[fields.InputDataFields.original_image]
        true_image_shapes = tf.slice(
            features[fields.InputDataFields.true_image_shape], [0, 0], [-1, 3])
        original_image_spatial_shapes = features[fields.InputDataFields
                                                 .original_image_spatial_shape]
pkulzc's avatar
pkulzc committed
529
530
      else:
        eval_images = features[fields.InputDataFields.image]
531
532
        true_image_shapes = None
        original_image_spatial_shapes = None
pkulzc's avatar
pkulzc committed
533

534
535
536
      eval_dict = eval_util.result_dict_for_batched_example(
          eval_images,
          features[inputs.HASH_KEY],
537
538
539
          detections,
          groundtruth,
          class_agnostic=class_agnostic,
540
541
542
          scale_to_absolute=True,
          original_image_spatial_shapes=original_image_spatial_shapes,
          true_image_shapes=true_image_shapes)
543

544
545
546
547
      if fields.InputDataFields.image_additional_channels in features:
        eval_dict[fields.InputDataFields.image_additional_channels] = features[
            fields.InputDataFields.image_additional_channels]

548
549
550
551
552
      if class_agnostic:
        category_index = label_map_util.create_class_agnostic_category_index()
      else:
        category_index = label_map_util.create_category_index_from_labelmap(
            eval_input_config.label_map_path)
553
      vis_metric_ops = None
554
      if not use_tpu and use_original_images:
555
556
557
        keypoint_edges = [
            (kp.start, kp.end) for kp in eval_config.keypoint_edge]

558
559
560
561
562
        eval_metric_op_vis = vis_utils.VisualizeSingleFrameDetections(
            category_index,
            max_examples_to_draw=eval_config.num_visualizations,
            max_boxes_to_draw=eval_config.max_num_boxes_to_visualize,
            min_score_thresh=eval_config.min_score_threshold,
563
564
            use_normalized_coordinates=False,
            keypoint_edges=keypoint_edges or None)
565
566
        vis_metric_ops = eval_metric_op_vis.get_estimator_eval_metric_ops(
            eval_dict)
567

568
569
      # Eval metrics on a single example.
      eval_metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
DefineFC's avatar
DefineFC committed
570
          eval_config, list(category_index.values()), eval_dict)
571
572
573
574
      for loss_key, loss_tensor in iter(losses_dict.items()):
        eval_metric_ops[loss_key] = tf.metrics.mean(loss_tensor)
      for var in optimizer_summary_vars:
        eval_metric_ops[var.op.name] = (var, tf.no_op())
575
576
      if vis_metric_ops is not None:
        eval_metric_ops.update(vis_metric_ops)
577
      eval_metric_ops = {str(k): v for k, v in eval_metric_ops.items()}
578

579
580
581
582
583
584
585
586
587
588
      if eval_config.use_moving_averages:
        variable_averages = tf.train.ExponentialMovingAverage(0.0)
        variables_to_restore = variable_averages.variables_to_restore()
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            variables_to_restore,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours)
        scaffold = tf.train.Scaffold(saver=saver)

589
590
    # EVAL executes on CPU, so use regular non-TPU EstimatorSpec.
    if use_tpu and mode != tf.estimator.ModeKeys.EVAL:
591
      return contrib_tpu.TPUEstimatorSpec(
592
593
594
595
596
597
598
599
          mode=mode,
          scaffold_fn=scaffold_fn,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metrics=eval_metric_ops,
          export_outputs=export_outputs)
    else:
600
601
602
603
604
605
606
607
608
      if scaffold is None:
        keep_checkpoint_every_n_hours = (
            train_config.keep_checkpoint_every_n_hours)
        saver = tf.train.Saver(
            sharded=True,
            keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours,
            save_relative_paths=True)
        tf.add_to_collection(tf.GraphKeys.SAVERS, saver)
        scaffold = tf.train.Scaffold(saver=saver)
609
610
611
612
613
614
      return tf.estimator.EstimatorSpec(
          mode=mode,
          predictions=detections,
          loss=total_loss,
          train_op=train_op,
          eval_metric_ops=eval_metric_ops,
615
616
          export_outputs=export_outputs,
          scaffold=scaffold)
617
618
619
620

  return model_fn


621
622
623
def create_estimator_and_inputs(run_config,
                                hparams,
                                pipeline_config_path,
624
                                config_override=None,
625
                                train_steps=None,
626
                                sample_1_of_n_eval_examples=1,
627
                                sample_1_of_n_eval_on_train_examples=1,
628
629
630
631
632
                                model_fn_creator=create_model_fn,
                                use_tpu_estimator=False,
                                use_tpu=False,
                                num_shards=1,
                                params=None,
633
                                override_eval_num_epochs=True,
634
                                save_final_config=False,
635
636
                                postprocess_on_cpu=False,
                                export_to_tpu=None,
637
638
                                **kwargs):
  """Creates `Estimator`, input functions, and steps.
639
640
641
642
643

  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
644
645
    config_override: A pipeline_pb2.TrainEvalPipelineConfig text proto to
      override the config from `pipeline_config_path`.
646
647
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
648
649
650
651
652
    sample_1_of_n_eval_examples: Integer representing how often an eval example
      should be sampled. If 1, will sample all examples.
    sample_1_of_n_eval_on_train_examples: Similar to
      `sample_1_of_n_eval_examples`, except controls the sampling of training
      data for evaluation.
653
654
655
656
657
658
659
660
661
662
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

663
664
665
666
667
668
669
670
    use_tpu_estimator: Whether a `TPUEstimator` should be returned. If False,
      an `Estimator` will be returned.
    use_tpu: Boolean, whether training and evaluation should run on TPU. Only
      used if `use_tpu_estimator` is True.
    num_shards: Number of shards (TPU cores). Only used if `use_tpu_estimator`
      is True.
    params: Parameter dictionary passed from the estimator. Only used if
      `use_tpu_estimator` is True.
671
672
    override_eval_num_epochs: Whether to overwrite the number of epochs to 1 for
      eval_input.
673
674
    save_final_config: Whether to save final config (obtained after applying
      overrides) to `estimator.model_dir`.
675
676
677
678
679
    postprocess_on_cpu: When use_tpu and postprocess_on_cpu are true,
      postprocess is scheduled on the host cpu.
    export_to_tpu: When use_tpu and export_to_tpu are true,
      `export_savedmodel()` exports a metagraph for serving on TPU besides the
      one on CPU.
680
681
682
    **kwargs: Additional keyword arguments for configuration override.

  Returns:
683
684
685
    A dictionary with the following fields:
    'estimator': An `Estimator` or `TPUEstimator`.
    'train_input_fn': A training input function.
686
687
    'eval_input_fns': A list of all evaluation input functions.
    'eval_input_names': A list of names for each evaluation input.
688
    'eval_on_train_input_fn': An evaluation-on-train input function.
689
690
691
    'predict_input_fn': A prediction input function.
    'train_steps': Number of training steps. Either directly from input or from
      configuration.
692
  """
693
694
695
696
  get_configs_from_pipeline_file = MODEL_BUILD_UTIL_MAP[
      'get_configs_from_pipeline_file']
  merge_external_params_with_configs = MODEL_BUILD_UTIL_MAP[
      'merge_external_params_with_configs']
697
698
  create_pipeline_proto_from_configs = MODEL_BUILD_UTIL_MAP[
      'create_pipeline_proto_from_configs']
699
700
701
  create_train_input_fn = MODEL_BUILD_UTIL_MAP['create_train_input_fn']
  create_eval_input_fn = MODEL_BUILD_UTIL_MAP['create_eval_input_fn']
  create_predict_input_fn = MODEL_BUILD_UTIL_MAP['create_predict_input_fn']
702
  detection_model_fn_base = MODEL_BUILD_UTIL_MAP['detection_model_fn_base']
703

704
705
  configs = get_configs_from_pipeline_file(
      pipeline_config_path, config_override=config_override)
706
707
  kwargs.update({
      'train_steps': train_steps,
708
      'use_bfloat16': configs['train_config'].use_bfloat16 and use_tpu
709
  })
pkulzc's avatar
pkulzc committed
710
711
712
713
  if sample_1_of_n_eval_examples >= 1:
    kwargs.update({
        'sample_1_of_n_eval_examples': sample_1_of_n_eval_examples
    })
714
715
716
717
  if override_eval_num_epochs:
    kwargs.update({'eval_num_epochs': 1})
    tf.logging.warning(
        'Forced number of epochs for all eval validations to be 1.')
718
  configs = merge_external_params_with_configs(
719
      configs, hparams, kwargs_dict=kwargs)
720
721
722
723
  model_config = configs['model']
  train_config = configs['train_config']
  train_input_config = configs['train_input_config']
  eval_config = configs['eval_config']
724
725
726
727
728
729
730
731
732
733
734
  eval_input_configs = configs['eval_input_configs']
  eval_on_train_input_config = copy.deepcopy(train_input_config)
  eval_on_train_input_config.sample_1_of_n_examples = (
      sample_1_of_n_eval_on_train_examples)
  if override_eval_num_epochs and eval_on_train_input_config.num_epochs != 1:
    tf.logging.warning('Expected number of evaluation epochs is 1, but '
                       'instead encountered `eval_on_train_input_config'
                       '.num_epochs` = '
                       '{}. Overwriting `num_epochs` to 1.'.format(
                           eval_on_train_input_config.num_epochs))
    eval_on_train_input_config.num_epochs = 1
735

736
737
738
  # update train_steps from config but only when non-zero value is provided
  if train_steps is None and train_config.num_steps != 0:
    train_steps = train_config.num_steps
739
740

  detection_model_fn = functools.partial(
741
      detection_model_fn_base, model_config=model_config)
742

743
  # Create the input functions for TRAIN/EVAL/PREDICT.
744
  train_input_fn = create_train_input_fn(
745
746
747
      train_config=train_config,
      train_input_config=train_input_config,
      model_config=model_config)
748
749
750
751
752
753
754
755
756
  eval_input_fns = [
      create_eval_input_fn(
          eval_config=eval_config,
          eval_input_config=eval_input_config,
          model_config=model_config) for eval_input_config in eval_input_configs
  ]
  eval_input_names = [
      eval_input_config.name for eval_input_config in eval_input_configs
  ]
757
758
  eval_on_train_input_fn = create_eval_input_fn(
      eval_config=eval_config,
759
      eval_input_config=eval_on_train_input_config,
760
      model_config=model_config)
761
  predict_input_fn = create_predict_input_fn(
762
      model_config=model_config, predict_input_config=eval_input_configs[0])
763

764
765
766
  # Read export_to_tpu from hparams if not passed.
  if export_to_tpu is None:
    export_to_tpu = hparams.get('export_to_tpu', False)
767
768
  tf.logging.info('create_estimator_and_inputs: use_tpu %s, export_to_tpu %s',
                  use_tpu, export_to_tpu)
769
770
  model_fn = model_fn_creator(detection_model_fn, configs, hparams, use_tpu,
                              postprocess_on_cpu)
771
  if use_tpu_estimator:
772
    estimator = contrib_tpu.TPUEstimator(
773
774
775
776
777
778
        model_fn=model_fn,
        train_batch_size=train_config.batch_size,
        # For each core, only batch size 1 is supported for eval.
        eval_batch_size=num_shards * 1 if use_tpu else 1,
        use_tpu=use_tpu,
        config=run_config,
779
780
        export_to_tpu=export_to_tpu,
        eval_on_tpu=False,  # Eval runs on CPU, so disable eval on TPU
pkulzc's avatar
pkulzc committed
781
        params=params if params else {})
782
783
  else:
    estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config)
784

785
  # Write the as-run pipeline config to disk.
786
  if run_config.is_chief and save_final_config:
787
    pipeline_config_final = create_pipeline_proto_from_configs(configs)
788
    config_util.save_pipeline_config(pipeline_config_final, estimator.model_dir)
789

790
  return dict(
791
792
      estimator=estimator,
      train_input_fn=train_input_fn,
793
794
      eval_input_fns=eval_input_fns,
      eval_input_names=eval_input_names,
795
      eval_on_train_input_fn=eval_on_train_input_fn,
796
      predict_input_fn=predict_input_fn,
797
      train_steps=train_steps)
798
799
800


def create_train_and_eval_specs(train_input_fn,
801
                                eval_input_fns,
802
                                eval_on_train_input_fn,
803
804
805
806
                                predict_input_fn,
                                train_steps,
                                eval_on_train_data=False,
                                final_exporter_name='Servo',
807
                                eval_spec_names=None):
808
809
810
811
  """Creates a `TrainSpec` and `EvalSpec`s.

  Args:
    train_input_fn: Function that produces features and labels on train data.
812
813
    eval_input_fns: A list of functions that produce features and labels on eval
      data.
814
815
    eval_on_train_input_fn: Function that produces features and labels for
      evaluation on train data.
816
817
818
819
820
    predict_input_fn: Function that produces features for inference.
    train_steps: Number of training steps.
    eval_on_train_data: Whether to evaluate model on training data. Default is
      False.
    final_exporter_name: String name given to `FinalExporter`.
821
    eval_spec_names: A list of string names for each `EvalSpec`.
822
823

  Returns:
824
825
826
    Tuple of `TrainSpec` and list of `EvalSpecs`. If `eval_on_train_data` is
    True, the last `EvalSpec` in the list will correspond to training data. The
    rest EvalSpecs in the list are evaluation datas.
827
828
829
830
  """
  train_spec = tf.estimator.TrainSpec(
      input_fn=train_input_fn, max_steps=train_steps)

831
  if eval_spec_names is None:
832
    eval_spec_names = [str(i) for i in range(len(eval_input_fns))]
833
834

  eval_specs = []
835
836
837
838
839
840
841
842
  for index, (eval_spec_name, eval_input_fn) in enumerate(
      zip(eval_spec_names, eval_input_fns)):
    # Uses final_exporter_name as exporter_name for the first eval spec for
    # backward compatibility.
    if index == 0:
      exporter_name = final_exporter_name
    else:
      exporter_name = '{}_{}'.format(final_exporter_name, eval_spec_name)
843
844
845
846
847
848
849
850
    exporter = tf.estimator.FinalExporter(
        name=exporter_name, serving_input_receiver_fn=predict_input_fn)
    eval_specs.append(
        tf.estimator.EvalSpec(
            name=eval_spec_name,
            input_fn=eval_input_fn,
            steps=None,
            exporters=exporter))
851
852
853
854

  if eval_on_train_data:
    eval_specs.append(
        tf.estimator.EvalSpec(
855
            name='eval_on_train', input_fn=eval_on_train_input_fn, steps=None))
856
857

  return train_spec, eval_specs
858
859


860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
def _evaluate_checkpoint(estimator,
                         input_fn,
                         checkpoint_path,
                         name,
                         max_retries=0):
  """Evaluates a checkpoint.

  Args:
    estimator: Estimator object to use for evaluation.
    input_fn: Input function to use for evaluation.
    checkpoint_path: Path of the checkpoint to evaluate.
    name: Namescope for eval summary.
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.

  Returns:
    Estimator evaluation results.
  """
  always_retry = True if max_retries < 0 else False
  retries = 0
  while always_retry or retries <= max_retries:
    try:
      return estimator.evaluate(
          input_fn=input_fn,
          steps=None,
          checkpoint_path=checkpoint_path,
          name=name)
    except tf.errors.InvalidArgumentError as e:
      if always_retry or retries < max_retries:
        tf.logging.info('Retrying checkpoint evaluation after exception: %s', e)
        retries += 1
      else:
        raise e


def continuous_eval(estimator,
                    model_dir,
                    input_fn,
                    train_steps,
                    name,
                    max_retries=0):
902
903
904
905
906
907
908
909
910
  """Perform continuous evaluation on checkpoints written to a model directory.

  Args:
    estimator: Estimator object to use for evaluation.
    model_dir: Model directory to read checkpoints for continuous evaluation.
    input_fn: Input function to use for evaluation.
    train_steps: Number of training steps. This is used to infer the last
      checkpoint and stop evaluation loop.
    name: Namescope for eval summary.
911
912
913
    max_retries: Maximum number of times to retry the evaluation on encountering
      a tf.errors.InvalidArgumentError. If negative, will always retry the
      evaluation.
914
  """
915

916
917
918
919
  def terminate_eval():
    tf.logging.info('Terminating eval after 180 seconds of no checkpoints')
    return True

920
  for ckpt in tf.train.checkpoints_iterator(
921
922
923
924
925
      model_dir, min_interval_secs=180, timeout=None,
      timeout_fn=terminate_eval):

    tf.logging.info('Starting Evaluation.')
    try:
926
927
928
929
930
931
      eval_results = _evaluate_checkpoint(
          estimator=estimator,
          input_fn=input_fn,
          checkpoint_path=ckpt,
          name=name,
          max_retries=max_retries)
932
933
934
935
936
937
938
939
940
941
942
943
944
945
      tf.logging.info('Eval results: %s' % eval_results)

      # Terminate eval job when final checkpoint is reached
      current_step = int(os.path.basename(ckpt).split('-')[1])
      if current_step >= train_steps:
        tf.logging.info(
            'Evaluation finished after training step %d' % current_step)
        break

    except tf.errors.NotFoundError:
      tf.logging.info(
          'Checkpoint %s no longer exists, skipping checkpoint' % ckpt)


946
947
948
949
950
951
952
953
def populate_experiment(run_config,
                        hparams,
                        pipeline_config_path,
                        train_steps=None,
                        eval_steps=None,
                        model_fn_creator=create_model_fn,
                        **kwargs):
  """Populates an `Experiment` object.
954

955
956
  EXPERIMENT CLASS IS DEPRECATED. Please switch to
  tf.estimator.train_and_evaluate. As an example, see model_main.py.
957

958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
  Args:
    run_config: A `RunConfig`.
    hparams: A `HParams`.
    pipeline_config_path: A path to a pipeline config file.
    train_steps: Number of training steps. If None, the number of training steps
      is set from the `TrainConfig` proto.
    eval_steps: Number of evaluation steps per evaluation cycle. If None, the
      number of evaluation steps is set from the `EvalConfig` proto.
    model_fn_creator: A function that creates a `model_fn` for `Estimator`.
      Follows the signature:

      * Args:
        * `detection_model_fn`: Function that returns `DetectionModel` instance.
        * `configs`: Dictionary of pipeline config objects.
        * `hparams`: `HParams` object.
      * Returns:
        `model_fn` for `Estimator`.

    **kwargs: Additional keyword arguments for configuration override.

  Returns:
    An `Experiment` that defines all aspects of training, evaluation, and
    export.
  """
  tf.logging.warning('Experiment is being deprecated. Please use '
                     'tf.estimator.train_and_evaluate(). See model_main.py for '
                     'an example.')
  train_and_eval_dict = create_estimator_and_inputs(
      run_config,
      hparams,
      pipeline_config_path,
      train_steps=train_steps,
      eval_steps=eval_steps,
      model_fn_creator=model_fn_creator,
992
      save_final_config=True,
993
994
995
      **kwargs)
  estimator = train_and_eval_dict['estimator']
  train_input_fn = train_and_eval_dict['train_input_fn']
996
  eval_input_fns = train_and_eval_dict['eval_input_fns']
997
998
999
1000
  predict_input_fn = train_and_eval_dict['predict_input_fn']
  train_steps = train_and_eval_dict['train_steps']

  export_strategies = [
1001
      contrib_learn.utils.saved_model_export_utils.make_export_strategy(
1002
1003
1004
          serving_input_fn=predict_input_fn)
  ]

1005
  return contrib_learn.Experiment(
1006
1007
      estimator=estimator,
      train_input_fn=train_input_fn,
1008
      eval_input_fn=eval_input_fns[0],
1009
      train_steps=train_steps,
1010
      eval_steps=None,
1011
      export_strategies=export_strategies,
1012
1013
      eval_delay_secs=120,
  )