neural_gpu_trainer.py 17 KB
Newer Older
Martin Wicke's avatar
Martin Wicke committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

Lukasz Kaiser's avatar
Lukasz Kaiser committed
16
17
18
19
20
21
22
23
24
25
26
27
28
"""Neural GPU for Learning Algorithms."""

import math
import os
import random
import sys
import time

import matplotlib.animation as anim
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

29
30
31
32
from tensorflow.python.platform import gfile

import data_utils as data
import neural_gpu
Lukasz Kaiser's avatar
Lukasz Kaiser committed
33
34
35
36
37
38
39

tf.app.flags.DEFINE_float("lr", 0.1, "Learning rate.")
tf.app.flags.DEFINE_float("init_weight", 1.0, "Initial weights deviation.")
tf.app.flags.DEFINE_float("max_grad_norm", 0.05, "Clip gradients to this norm.")
tf.app.flags.DEFINE_float("cutoff", 1.2, "Cutoff at the gates.")
tf.app.flags.DEFINE_float("pull", 0.0005, "Starting pull of the relaxations.")
tf.app.flags.DEFINE_float("pull_incr", 1.2, "Increase pull by that much.")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
40
tf.app.flags.DEFINE_float("curriculum_bound", 0.06, "Move curriculum < this.")
41
tf.app.flags.DEFINE_float("dropout", 0.15, "Dropout that much.")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
42
43
44
tf.app.flags.DEFINE_float("grad_noise_scale", 1.0, "Gradient noise scale.")
tf.app.flags.DEFINE_integer("batch_size", 64, "Batch size.")
tf.app.flags.DEFINE_integer("low_batch_size", 16, "Low batch size.")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
45
tf.app.flags.DEFINE_integer("steps_per_checkpoint", 200, "Steps per epoch.")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
tf.app.flags.DEFINE_integer("nmaps", 24, "Number of floats in each cell.")
tf.app.flags.DEFINE_integer("niclass", 14, "Number of classes (0 is padding).")
tf.app.flags.DEFINE_integer("noclass", 14, "Number of classes (0 is padding).")
tf.app.flags.DEFINE_integer("train_data_size", 5000, "Training examples/len.")
tf.app.flags.DEFINE_integer("max_length", 41, "Maximum length.")
tf.app.flags.DEFINE_integer("rx_step", 6, "Relax that many recursive steps.")
tf.app.flags.DEFINE_integer("random_seed", 125459, "Random seed.")
tf.app.flags.DEFINE_integer("nconvs", 2, "How many convolutions / 1 step.")
tf.app.flags.DEFINE_integer("kw", 3, "Kernel width.")
tf.app.flags.DEFINE_integer("kh", 3, "Kernel height.")
tf.app.flags.DEFINE_integer("height", 4, "Height.")
tf.app.flags.DEFINE_integer("forward_max", 401, "Maximum forward length.")
tf.app.flags.DEFINE_integer("jobid", -1, "Task id when running on borg.")
tf.app.flags.DEFINE_integer("nprint", 0, "How many test examples to print out.")
tf.app.flags.DEFINE_integer("mode", 0, "Mode: 0-train other-decode.")
tf.app.flags.DEFINE_string("task", "rev", "Which task are we learning?")
tf.app.flags.DEFINE_string("train_dir", "/tmp/", "Directory to store models.")

FLAGS = tf.app.flags.FLAGS
65
EXTRA_EVAL = 12
Lukasz Kaiser's avatar
Lukasz Kaiser committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85


def initialize(sess):
  """Initialize data and model."""
  if FLAGS.jobid >= 0:
    data.log_filename = os.path.join(FLAGS.train_dir, "log%d" % FLAGS.jobid)
  data.print_out("NN ", newline=False)

  # Set random seed.
  seed = FLAGS.random_seed + max(0, FLAGS.jobid)
  tf.set_random_seed(seed)
  random.seed(seed)
  np.random.seed(seed)

  # Check data sizes.
  data.forward_max = max(FLAGS.forward_max, data.bins[-1])
  assert data.bins
  min_length = 3
  max_length = min(FLAGS.max_length, data.bins[-1])
  assert max_length + 1 > min_length
86
  while len(data.bins) > 1 and data.bins[-2] > max_length + EXTRA_EVAL:
Lukasz Kaiser's avatar
Lukasz Kaiser committed
87
88
89
90
91
92
93
94
    data.bins = data.bins[:-1]
  assert data.bins[0] > FLAGS.rx_step
  nclass = min(FLAGS.niclass, FLAGS.noclass)
  data_size = FLAGS.train_data_size if FLAGS.mode == 0 else 1000

  # Initialize data for each task.
  tasks = FLAGS.task.split("-")
  for t in tasks:
95
    for l in xrange(max_length + EXTRA_EVAL - 1):
Lukasz Kaiser's avatar
Lukasz Kaiser committed
96
97
98
99
100
101
102
      data.init_data(t, l, data_size, nclass)
    data.init_data(t, data.bins[-2], data_size, nclass)
    data.init_data(t, data.bins[-1], data_size, nclass)
    end_size = 4 * 1024 if FLAGS.mode > 0 else 1024
    data.init_data(t, data.forward_max, end_size, nclass)

  # Print out parameters.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
103
  curriculum = FLAGS.curriculum_bound
104
105
106
107
108
109
110
111
  msg1 = ("layers %d kw %d h %d kh %d relax %d batch %d noise %.2f task %s"
          % (FLAGS.nconvs, FLAGS.kw, FLAGS.height, FLAGS.kh, FLAGS.rx_step,
             FLAGS.batch_size, FLAGS.grad_noise_scale, FLAGS.task))
  msg2 = "data %d %s" % (FLAGS.train_data_size, msg1)
  msg3 = ("cut %.2f pull %.3f lr %.2f iw %.2f cr %.2f nm %d d%.4f gn %.2f %s" %
          (FLAGS.cutoff, FLAGS.pull_incr, FLAGS.lr, FLAGS.init_weight,
           curriculum, FLAGS.nmaps, FLAGS.dropout, FLAGS.max_grad_norm, msg2))
  data.print_out(msg3)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
112
113
114
115
116
117
118
119
120
121
122

  # Create checkpoint directory if it does not exist.
  checkpoint_dir = os.path.join(FLAGS.train_dir, "neural_gpu%s"
                                % ("" if FLAGS.jobid < 0 else str(FLAGS.jobid)))
  if not gfile.IsDirectory(checkpoint_dir):
    data.print_out("Creating checkpoint directory %s." % checkpoint_dir)
    gfile.MkDir(checkpoint_dir)

  # Create model and initialize it.
  tf.get_variable_scope().set_initializer(
      tf.uniform_unit_scaling_initializer(factor=1.8 * FLAGS.init_weight))
123
  model = neural_gpu.NeuralGPU(
Lukasz Kaiser's avatar
Lukasz Kaiser committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
      FLAGS.nmaps, FLAGS.nmaps, FLAGS.niclass, FLAGS.noclass, FLAGS.dropout,
      FLAGS.rx_step, FLAGS.max_grad_norm, FLAGS.cutoff, FLAGS.nconvs,
      FLAGS.kw, FLAGS.kh, FLAGS.height, FLAGS.mode, FLAGS.lr,
      FLAGS.pull, FLAGS.pull_incr, min_length + 3)
  data.print_out("Created model.")
  sess.run(tf.initialize_all_variables())
  data.print_out("Initialized variables.")

  # Load model from parameters if a checkpoint exists.
  ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
  if ckpt and gfile.Exists(ckpt.model_checkpoint_path):
    data.print_out("Reading model parameters from %s"
                   % ckpt.model_checkpoint_path)
    model.saver.restore(sess, ckpt.model_checkpoint_path)

  # Return the model and needed variables.
  return (model, min_length, max_length, checkpoint_dir, curriculum)


def single_test(l, model, sess, task, nprint, batch_size, print_out=True,
                offset=None):
  """Test model on test data of length l using the given session."""
  inpt, target = data.get_batch(l, batch_size, False, task, offset)
  _, res, _, steps = model.step(sess, inpt, target, False)
148
149
  errors, total, seq_err = data.accuracy(inpt, res, target, batch_size, nprint)
  seq_err = float(seq_err) / batch_size
Lukasz Kaiser's avatar
Lukasz Kaiser committed
150
151
152
153
  if total > 0:
    errors = float(errors) / total
  if print_out:
    data.print_out("  %s len %d errors %.2f sequence-errors %.2f"
154
155
                   % (task, l, 100*errors, 100*seq_err))
  return errors, seq_err, (steps, inpt, [np.argmax(o, axis=1) for o in res])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
156
157
158
159


def multi_test(l, model, sess, task, nprint, batch_size, offset=None):
  """Run multiple tests at lower batch size to save memory."""
160
  errors, seq_err = 0.0, 0.0
Lukasz Kaiser's avatar
Lukasz Kaiser committed
161
162
163
164
165
  to_print = nprint
  low_batch = FLAGS.low_batch_size
  low_batch = min(low_batch, batch_size)
  for mstep in xrange(batch_size / low_batch):
    cur_offset = None if offset is None else offset + mstep * low_batch
166
167
    err, sq_err, _ = single_test(l, model, sess, task, to_print, low_batch,
                                 False, cur_offset)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
168
169
    to_print = max(0, to_print - low_batch)
    errors += err
170
    seq_err += sq_err
Lukasz Kaiser's avatar
Lukasz Kaiser committed
171
172
    if FLAGS.mode > 0:
      cur_errors = float(low_batch * errors) / ((mstep+1) * low_batch)
173
      cur_seq_err = float(low_batch * seq_err) / ((mstep+1) * low_batch)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
174
      data.print_out("    %s multitest current errors %.2f sequence-errors %.2f"
175
                     % (task, 100*cur_errors, 100*cur_seq_err))
Lukasz Kaiser's avatar
Lukasz Kaiser committed
176
  errors = float(low_batch) * float(errors) / batch_size
177
  seq_err = float(low_batch) * float(seq_err) / batch_size
Lukasz Kaiser's avatar
Lukasz Kaiser committed
178
  data.print_out("  %s len %d errors %.2f sequence-errors %.2f"
179
180
                 % (task, l, 100*errors, 100*seq_err))
  return errors, seq_err
Lukasz Kaiser's avatar
Lukasz Kaiser committed
181
182
183


def train():
184
  """Train the model."""
Lukasz Kaiser's avatar
Lukasz Kaiser committed
185
186
187
188
189
190
  batch_size = FLAGS.batch_size
  tasks = FLAGS.task.split("-")
  with tf.Session() as sess:
    model, min_length, max_length, checkpoint_dir, curriculum = initialize(sess)
    max_cur_length = min(min_length + 3, max_length)
    prev_acc_perp = [1000000 for _ in xrange(3)]
191
    prev_seq_err = 1.0
Lukasz Kaiser's avatar
Lukasz Kaiser committed
192

193
    # Main traning loop.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
194
195
196
    while True:
      global_step, pull, max_cur_length, learning_rate = sess.run(
          [model.global_step, model.pull, model.cur_length, model.lr])
197
      acc_loss, acc_total, acc_errors, acc_seq_err = 0.0, 0, 0, 0
Lukasz Kaiser's avatar
Lukasz Kaiser committed
198
199
200
201
      acc_grad_norm, step_count, step_time = 0.0, 0, 0.0
      for _ in xrange(FLAGS.steps_per_checkpoint):
        global_step += 1
        task = random.choice(tasks)
202
203
204
205
206
207

        # Select the length for curriculum learning.
        l = np.random.randint(max_cur_length - min_length + 1) + min_length
        # Prefer longer stuff 60% of time.
        if np.random.randint(100) < 60:
          l1 = np.random.randint(max_cur_length - min_length+1) + min_length
Lukasz Kaiser's avatar
Lukasz Kaiser committed
208
          l = max(l, l1)
209
210
211
        # Mixed curriculum learning: in 25% of cases go to any larger length.
        if np.random.randint(100) < 25:
          l1 = np.random.randint(max_length - min_length + 1) + min_length
Lukasz Kaiser's avatar
Lukasz Kaiser committed
212
          l = max(l, l1)
213
214

        # Run a step and time it.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
215
216
        start_time = time.time()
        inp, target = data.get_batch(l, batch_size, True, task)
217
218
        noise_param = math.sqrt(math.pow(global_step, -0.55) *
                                (20 * prev_seq_err)) * FLAGS.grad_noise_scale
Lukasz Kaiser's avatar
Lukasz Kaiser committed
219
220
221
        loss, res, gnorm, _ = model.step(sess, inp, target, True, noise_param)
        step_time += time.time() - start_time
        acc_grad_norm += float(gnorm)
222
223

        # Accumulate statistics only if we did not exceed curriculum length.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
224
225
226
        if l < max_cur_length + 1:
          step_count += 1
          acc_loss += loss
227
228
          errors, total, seq_err = data.accuracy(inp, res, target,
                                                 batch_size, 0)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
229
230
          acc_total += total
          acc_errors += errors
231
232
233
          acc_seq_err += seq_err

      # Normalize and print out accumulated statistics.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
234
235
      acc_loss /= step_count
      step_time /= FLAGS.steps_per_checkpoint
236
237
      acc_seq_err = float(acc_seq_err) / (step_count * batch_size)
      prev_seq_err = acc_seq_err
Lukasz Kaiser's avatar
Lukasz Kaiser committed
238
      acc_errors = float(acc_errors) / acc_total if acc_total > 0 else 1.0
239
240
241
242
243
244
245
246
247
248
249
      msg1 = "step %d step-time %.2f" % (global_step, step_time)
      msg2 = "lr %.8f pull %.3f" % (learning_rate, pull)
      msg3 = ("%s %s grad-norm %.8f"
              % (msg1, msg2, acc_grad_norm / FLAGS.steps_per_checkpoint))
      data.print_out("%s len %d ppx %.8f errors %.2f sequence-errors %.2f" %
                     (msg3, max_cur_length, data.safe_exp(acc_loss),
                      100*acc_errors, 100*acc_seq_err))

      # If errors are below the curriculum threshold, move curriculum forward.
      if curriculum > acc_seq_err:
        # Increase current length (until the next with training data).
Lukasz Kaiser's avatar
Lukasz Kaiser committed
250
251
252
253
254
        do_incr = True
        while do_incr and max_cur_length < max_length:
          sess.run(model.cur_length_incr_op)
          for t in tasks:
            if data.train_set[t]: do_incr = False
255
256
257
258
        # Forget last perplexities if we're not yet at the end.
        if max_cur_length < max_length:
          prev_acc_perp.append(1000000)
        # Either increase pull or, if it's large, average parameters.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
259
260
261
262
263
        if pull < 1:
          sess.run(model.pull_incr_op)
        else:
          data.print_out("  Averaging parameters.")
          sess.run([model.avg_op, model.lr_decay_op])
264
265
266
267
268
269
270
271

      # Lower learning rate if we're worse than the last 3 checkpoints.
      acc_perp = data.safe_exp(acc_loss)
      if acc_perp > max(prev_acc_perp[-3:]):
        sess.run(model.lr_decay_op)
      prev_acc_perp.append(acc_perp)

      # Save checkpoint.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
272
273
274
      checkpoint_path = os.path.join(checkpoint_dir, "neural_gpu.ckpt")
      model.saver.save(sess, checkpoint_path,
                       global_step=model.global_step)
275

Lukasz Kaiser's avatar
Lukasz Kaiser committed
276
277
278
279
      # Run evaluation.
      bound = data.bins[-1] + 1
      for t in tasks:
        l = min_length
280
281
282
        while l < max_length + EXTRA_EVAL and l < bound:
          _, seq_err, _ = single_test(l, model, sess, t,
                                      FLAGS.nprint, batch_size)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
283
284
285
          l += 1
          while l < bound + 1 and not data.test_set[t][l]:
            l += 1
286
287
288
289
        if seq_err < 0.5:  # Run larger test if we're good enough.
          _, seq_err = multi_test(data.forward_max, model, sess, t,
                                  FLAGS.nprint, batch_size * 4)
      if seq_err < 0.01:  # Super-large test on 1-task large-forward models.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
290
291
292
293
294
295
296
        if data.forward_max > 4000 and len(tasks) == 1:
          multi_test(data.forward_max, model, sess, tasks[0], FLAGS.nprint,
                     batch_size * 16, 0)


def animate(l, test_data, anim_size):
  """Create animation for the given data (hacky matplotlib use)."""
297
298
299
300
  xf = 12  # Extra frames to slow down at start and end.
  fps = 2  # Frames per step.

  # Make the figure.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
301
302
303
304
305
306
  fig = plt.figure(figsize=(16, 9), facecolor="white")
  ax = fig.add_axes([0, 0, 1, 1], frameon=False, zorder=2)
  ax.set_xticks([i * 24-0.5 for i in xrange(4)])
  ax.set_xticklabels([])
  ax.set_yticks([i - 0.5 for i in xrange(l+1)])
  ax.grid(which="major", axis="both", linestyle="-", color="black")
307
  # We need text fields.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
308
309
310
311
312
313
314
315
316
317
318
  text_fields = []
  text_size = 24*32/l
  for y in xrange(l):
    text_fields.append(ax.text(
        11.25, y + 0.15, "", color="g", ha="center", va="center",
        bbox={"facecolor": "b", "alpha": 0.01, "pad": 24 * text_size},
        size=text_size - (4 * 32 / l), animated=True))
  im = ax.imshow(np.zeros_like(test_data[0][0][0]), vmin=-1.0,
                 vmax=1.0, cmap="gray", aspect="auto", origin="upper",
                 interpolation="none", animated=True)
  im.set_zorder(1)
319
320

  # Main animation step.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
  def animation_update(frame_no, test_data, xf, im, text_fields):
    """Update an animation frame."""
    steps, inpt, out_raw = test_data
    length = len(steps)
    batch = frame_no / (fps * (l+4*xf))
    index = int((frame_no % (fps * (l+4*xf))) / fps)
    # Cut output after first padding.
    out = [out_raw[i][batch] for i in xrange(len(text_fields))]
    if 0 in out:
      i = out.index(0)
      out = out[0:i] + [0 for _ in xrange(len(out) - i)]
    # Show the state after the first frames.
    if index >= 2*xf:
      im.set_array(steps[min(length - 1, index - 2*xf)][batch])
      for i, t in enumerate(text_fields):
        if index - 2*xf < length:
          t.set_text("")
        else:
339
          t.set_text(data.to_symbol(out[i]))
Lukasz Kaiser's avatar
Lukasz Kaiser committed
340
341
    else:
      for i, t in enumerate(text_fields):
342
        t.set_text(data.to_symbol(inpt[i][batch]) if index < xf else "")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
343
344
345
346
347
      if index < xf:
        im.set_array(np.zeros_like(steps[0][0]))
      else:
        im.set_array(steps[0][batch])
    return im,
348
349

  # Create the animation and save to mp4.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
  animation = anim.FuncAnimation(
      fig, animation_update, blit=True, frames=(l+4*xf)*anim_size*fps,
      interval=500/fps, fargs=(test_data, xf, im, text_fields))
  animation.save("/tmp/neural_gpu.mp4", writer="mencoder", fps=4*fps, dpi=3*80)


def evaluate():
  """Evaluate an existing model."""
  batch_size = FLAGS.batch_size
  tasks = FLAGS.task.split("-")
  with tf.Session() as sess:
    model, min_length, max_length, _, _ = initialize(sess)
    bound = data.bins[-1] + 1
    for t in tasks:
      l = min_length
365
366
      while l < max_length + EXTRA_EVAL and l < bound:
        _, seq_err, _ = single_test(l, model, sess, t, FLAGS.nprint, batch_size)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
367
368
369
370
371
372
373
374
        l += 1
        while l < bound + 1 and not data.test_set[t][l]:
          l += 1
      # Animate.
      anim_size = 2
      _, _, test_data = single_test(l, model, sess, t, 0, anim_size)
      animate(l, test_data, anim_size)
      # More tests.
375
376
377
      _, seq_err = multi_test(data.forward_max, model, sess, t, FLAGS.nprint,
                              batch_size * 4)
    if seq_err < 0.01:  # Super-test if we're very good and in large-test mode.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
378
379
380
381
382
383
384
385
386
      if data.forward_max > 4000 and len(tasks) == 1:
        multi_test(data.forward_max, model, sess, tasks[0], FLAGS.nprint,
                   batch_size * 64, 0)


def interactive():
  """Interactively probe an existing model."""
  with tf.Session() as sess:
    model, _, _, _, _ = initialize(sess)
387
    sys.stdout.write("Input to Neural GPU, e.g., 0 1. Use -1 for PAD.\n")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
388
389
390
391
    sys.stdout.write("> ")
    sys.stdout.flush()
    inpt = sys.stdin.readline()
    while inpt:
392
      ids = [data.to_id(s) for s in inpt.strip().split()]
Lukasz Kaiser's avatar
Lukasz Kaiser committed
393
394
395
396
      inpt, target = data.get_batch(len(ids), 1, False, "",
                                    preset=(ids, [0 for _ in ids]))
      _, res, _, _ = model.step(sess, inpt, target, False)
      res = [np.argmax(o, axis=1) for o in res]
397
398
      res = [o for o in res[:len(ids)] if o > 0]
      print "  " + " ".join([data.to_symbol(output[0]) for output in res])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
      sys.stdout.write("> ")
      sys.stdout.flush()
      inpt = sys.stdin.readline()


def main(_):
  if FLAGS.mode == 0:
    train()
  elif FLAGS.mode == 1:
    evaluate()
  else:
    interactive()

if __name__ == "__main__":
  tf.app.run()