"sgl-kernel/vscode:/vscode.git/clone" did not exist on "8491c794ad9964a2658e06b654a40802ecd7edbd"
neural_gpu_trainer.py 16.2 KB
Newer Older
Lukasz Kaiser's avatar
Lukasz Kaiser committed
1
2
3
4
5
6
7
8
9
10
11
12
13
"""Neural GPU for Learning Algorithms."""

import math
import os
import random
import sys
import time

import matplotlib.animation as anim
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

14
15
16
17
from tensorflow.python.platform import gfile

import data_utils as data
import neural_gpu
Lukasz Kaiser's avatar
Lukasz Kaiser committed
18
19
20
21
22
23
24

tf.app.flags.DEFINE_float("lr", 0.1, "Learning rate.")
tf.app.flags.DEFINE_float("init_weight", 1.0, "Initial weights deviation.")
tf.app.flags.DEFINE_float("max_grad_norm", 0.05, "Clip gradients to this norm.")
tf.app.flags.DEFINE_float("cutoff", 1.2, "Cutoff at the gates.")
tf.app.flags.DEFINE_float("pull", 0.0005, "Starting pull of the relaxations.")
tf.app.flags.DEFINE_float("pull_incr", 1.2, "Increase pull by that much.")
25
tf.app.flags.DEFINE_float("dropout", 0.15, "Dropout that much.")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
tf.app.flags.DEFINE_float("grad_noise_scale", 1.0, "Gradient noise scale.")
tf.app.flags.DEFINE_integer("batch_size", 64, "Batch size.")
tf.app.flags.DEFINE_integer("low_batch_size", 16, "Low batch size.")
tf.app.flags.DEFINE_integer("steps_per_checkpoint", 100, "Steps per epoch.")
tf.app.flags.DEFINE_integer("nmaps", 24, "Number of floats in each cell.")
tf.app.flags.DEFINE_integer("niclass", 14, "Number of classes (0 is padding).")
tf.app.flags.DEFINE_integer("noclass", 14, "Number of classes (0 is padding).")
tf.app.flags.DEFINE_integer("train_data_size", 5000, "Training examples/len.")
tf.app.flags.DEFINE_integer("max_length", 41, "Maximum length.")
tf.app.flags.DEFINE_integer("rx_step", 6, "Relax that many recursive steps.")
tf.app.flags.DEFINE_integer("random_seed", 125459, "Random seed.")
tf.app.flags.DEFINE_integer("nconvs", 2, "How many convolutions / 1 step.")
tf.app.flags.DEFINE_integer("kw", 3, "Kernel width.")
tf.app.flags.DEFINE_integer("kh", 3, "Kernel height.")
tf.app.flags.DEFINE_integer("height", 4, "Height.")
tf.app.flags.DEFINE_integer("forward_max", 401, "Maximum forward length.")
tf.app.flags.DEFINE_integer("jobid", -1, "Task id when running on borg.")
tf.app.flags.DEFINE_integer("nprint", 0, "How many test examples to print out.")
tf.app.flags.DEFINE_integer("mode", 0, "Mode: 0-train other-decode.")
tf.app.flags.DEFINE_string("task", "rev", "Which task are we learning?")
tf.app.flags.DEFINE_string("train_dir", "/tmp/", "Directory to store models.")

FLAGS = tf.app.flags.FLAGS
49
EXTRA_EVAL = 12
Lukasz Kaiser's avatar
Lukasz Kaiser committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69


def initialize(sess):
  """Initialize data and model."""
  if FLAGS.jobid >= 0:
    data.log_filename = os.path.join(FLAGS.train_dir, "log%d" % FLAGS.jobid)
  data.print_out("NN ", newline=False)

  # Set random seed.
  seed = FLAGS.random_seed + max(0, FLAGS.jobid)
  tf.set_random_seed(seed)
  random.seed(seed)
  np.random.seed(seed)

  # Check data sizes.
  data.forward_max = max(FLAGS.forward_max, data.bins[-1])
  assert data.bins
  min_length = 3
  max_length = min(FLAGS.max_length, data.bins[-1])
  assert max_length + 1 > min_length
70
  while len(data.bins) > 1 and data.bins[-2] > max_length + EXTRA_EVAL:
Lukasz Kaiser's avatar
Lukasz Kaiser committed
71
72
73
74
75
76
77
78
    data.bins = data.bins[:-1]
  assert data.bins[0] > FLAGS.rx_step
  nclass = min(FLAGS.niclass, FLAGS.noclass)
  data_size = FLAGS.train_data_size if FLAGS.mode == 0 else 1000

  # Initialize data for each task.
  tasks = FLAGS.task.split("-")
  for t in tasks:
79
    for l in xrange(max_length + EXTRA_EVAL - 1):
Lukasz Kaiser's avatar
Lukasz Kaiser committed
80
81
82
83
84
85
86
87
      data.init_data(t, l, data_size, nclass)
    data.init_data(t, data.bins[-2], data_size, nclass)
    data.init_data(t, data.bins[-1], data_size, nclass)
    end_size = 4 * 1024 if FLAGS.mode > 0 else 1024
    data.init_data(t, data.forward_max, end_size, nclass)

  # Print out parameters.
  curriculum = 0.12
88
89
90
91
92
93
94
95
  msg1 = ("layers %d kw %d h %d kh %d relax %d batch %d noise %.2f task %s"
          % (FLAGS.nconvs, FLAGS.kw, FLAGS.height, FLAGS.kh, FLAGS.rx_step,
             FLAGS.batch_size, FLAGS.grad_noise_scale, FLAGS.task))
  msg2 = "data %d %s" % (FLAGS.train_data_size, msg1)
  msg3 = ("cut %.2f pull %.3f lr %.2f iw %.2f cr %.2f nm %d d%.4f gn %.2f %s" %
          (FLAGS.cutoff, FLAGS.pull_incr, FLAGS.lr, FLAGS.init_weight,
           curriculum, FLAGS.nmaps, FLAGS.dropout, FLAGS.max_grad_norm, msg2))
  data.print_out(msg3)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
96
97
98
99
100
101
102
103
104
105
106

  # Create checkpoint directory if it does not exist.
  checkpoint_dir = os.path.join(FLAGS.train_dir, "neural_gpu%s"
                                % ("" if FLAGS.jobid < 0 else str(FLAGS.jobid)))
  if not gfile.IsDirectory(checkpoint_dir):
    data.print_out("Creating checkpoint directory %s." % checkpoint_dir)
    gfile.MkDir(checkpoint_dir)

  # Create model and initialize it.
  tf.get_variable_scope().set_initializer(
      tf.uniform_unit_scaling_initializer(factor=1.8 * FLAGS.init_weight))
107
  model = neural_gpu.NeuralGPU(
Lukasz Kaiser's avatar
Lukasz Kaiser committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
      FLAGS.nmaps, FLAGS.nmaps, FLAGS.niclass, FLAGS.noclass, FLAGS.dropout,
      FLAGS.rx_step, FLAGS.max_grad_norm, FLAGS.cutoff, FLAGS.nconvs,
      FLAGS.kw, FLAGS.kh, FLAGS.height, FLAGS.mode, FLAGS.lr,
      FLAGS.pull, FLAGS.pull_incr, min_length + 3)
  data.print_out("Created model.")
  sess.run(tf.initialize_all_variables())
  data.print_out("Initialized variables.")

  # Load model from parameters if a checkpoint exists.
  ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
  if ckpt and gfile.Exists(ckpt.model_checkpoint_path):
    data.print_out("Reading model parameters from %s"
                   % ckpt.model_checkpoint_path)
    model.saver.restore(sess, ckpt.model_checkpoint_path)

  # Return the model and needed variables.
  return (model, min_length, max_length, checkpoint_dir, curriculum)


def single_test(l, model, sess, task, nprint, batch_size, print_out=True,
                offset=None):
  """Test model on test data of length l using the given session."""
  inpt, target = data.get_batch(l, batch_size, False, task, offset)
  _, res, _, steps = model.step(sess, inpt, target, False)
132
133
  errors, total, seq_err = data.accuracy(inpt, res, target, batch_size, nprint)
  seq_err = float(seq_err) / batch_size
Lukasz Kaiser's avatar
Lukasz Kaiser committed
134
135
136
137
  if total > 0:
    errors = float(errors) / total
  if print_out:
    data.print_out("  %s len %d errors %.2f sequence-errors %.2f"
138
139
                   % (task, l, 100*errors, 100*seq_err))
  return errors, seq_err, (steps, inpt, [np.argmax(o, axis=1) for o in res])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
140
141
142
143


def multi_test(l, model, sess, task, nprint, batch_size, offset=None):
  """Run multiple tests at lower batch size to save memory."""
144
  errors, seq_err = 0.0, 0.0
Lukasz Kaiser's avatar
Lukasz Kaiser committed
145
146
147
148
149
  to_print = nprint
  low_batch = FLAGS.low_batch_size
  low_batch = min(low_batch, batch_size)
  for mstep in xrange(batch_size / low_batch):
    cur_offset = None if offset is None else offset + mstep * low_batch
150
151
    err, sq_err, _ = single_test(l, model, sess, task, to_print, low_batch,
                                 False, cur_offset)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
152
153
    to_print = max(0, to_print - low_batch)
    errors += err
154
    seq_err += sq_err
Lukasz Kaiser's avatar
Lukasz Kaiser committed
155
156
    if FLAGS.mode > 0:
      cur_errors = float(low_batch * errors) / ((mstep+1) * low_batch)
157
      cur_seq_err = float(low_batch * seq_err) / ((mstep+1) * low_batch)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
158
      data.print_out("    %s multitest current errors %.2f sequence-errors %.2f"
159
                     % (task, 100*cur_errors, 100*cur_seq_err))
Lukasz Kaiser's avatar
Lukasz Kaiser committed
160
  errors = float(low_batch) * float(errors) / batch_size
161
  seq_err = float(low_batch) * float(seq_err) / batch_size
Lukasz Kaiser's avatar
Lukasz Kaiser committed
162
  data.print_out("  %s len %d errors %.2f sequence-errors %.2f"
163
164
                 % (task, l, 100*errors, 100*seq_err))
  return errors, seq_err
Lukasz Kaiser's avatar
Lukasz Kaiser committed
165
166
167


def train():
168
  """Train the model."""
Lukasz Kaiser's avatar
Lukasz Kaiser committed
169
170
171
172
173
174
  batch_size = FLAGS.batch_size
  tasks = FLAGS.task.split("-")
  with tf.Session() as sess:
    model, min_length, max_length, checkpoint_dir, curriculum = initialize(sess)
    max_cur_length = min(min_length + 3, max_length)
    prev_acc_perp = [1000000 for _ in xrange(3)]
175
    prev_seq_err = 1.0
Lukasz Kaiser's avatar
Lukasz Kaiser committed
176

177
    # Main traning loop.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
178
179
180
    while True:
      global_step, pull, max_cur_length, learning_rate = sess.run(
          [model.global_step, model.pull, model.cur_length, model.lr])
181
      acc_loss, acc_total, acc_errors, acc_seq_err = 0.0, 0, 0, 0
Lukasz Kaiser's avatar
Lukasz Kaiser committed
182
183
184
185
      acc_grad_norm, step_count, step_time = 0.0, 0, 0.0
      for _ in xrange(FLAGS.steps_per_checkpoint):
        global_step += 1
        task = random.choice(tasks)
186
187
188
189
190
191

        # Select the length for curriculum learning.
        l = np.random.randint(max_cur_length - min_length + 1) + min_length
        # Prefer longer stuff 60% of time.
        if np.random.randint(100) < 60:
          l1 = np.random.randint(max_cur_length - min_length+1) + min_length
Lukasz Kaiser's avatar
Lukasz Kaiser committed
192
          l = max(l, l1)
193
194
195
        # Mixed curriculum learning: in 25% of cases go to any larger length.
        if np.random.randint(100) < 25:
          l1 = np.random.randint(max_length - min_length + 1) + min_length
Lukasz Kaiser's avatar
Lukasz Kaiser committed
196
          l = max(l, l1)
197
198

        # Run a step and time it.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
199
200
        start_time = time.time()
        inp, target = data.get_batch(l, batch_size, True, task)
201
202
        noise_param = math.sqrt(math.pow(global_step, -0.55) *
                                (20 * prev_seq_err)) * FLAGS.grad_noise_scale
Lukasz Kaiser's avatar
Lukasz Kaiser committed
203
204
205
        loss, res, gnorm, _ = model.step(sess, inp, target, True, noise_param)
        step_time += time.time() - start_time
        acc_grad_norm += float(gnorm)
206
207

        # Accumulate statistics only if we did not exceed curriculum length.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
208
209
210
        if l < max_cur_length + 1:
          step_count += 1
          acc_loss += loss
211
212
          errors, total, seq_err = data.accuracy(inp, res, target,
                                                 batch_size, 0)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
213
214
          acc_total += total
          acc_errors += errors
215
216
217
          acc_seq_err += seq_err

      # Normalize and print out accumulated statistics.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
218
219
      acc_loss /= step_count
      step_time /= FLAGS.steps_per_checkpoint
220
221
      acc_seq_err = float(acc_seq_err) / (step_count * batch_size)
      prev_seq_err = acc_seq_err
Lukasz Kaiser's avatar
Lukasz Kaiser committed
222
      acc_errors = float(acc_errors) / acc_total if acc_total > 0 else 1.0
223
224
225
226
227
228
229
230
231
232
233
      msg1 = "step %d step-time %.2f" % (global_step, step_time)
      msg2 = "lr %.8f pull %.3f" % (learning_rate, pull)
      msg3 = ("%s %s grad-norm %.8f"
              % (msg1, msg2, acc_grad_norm / FLAGS.steps_per_checkpoint))
      data.print_out("%s len %d ppx %.8f errors %.2f sequence-errors %.2f" %
                     (msg3, max_cur_length, data.safe_exp(acc_loss),
                      100*acc_errors, 100*acc_seq_err))

      # If errors are below the curriculum threshold, move curriculum forward.
      if curriculum > acc_seq_err:
        # Increase current length (until the next with training data).
Lukasz Kaiser's avatar
Lukasz Kaiser committed
234
235
236
237
238
        do_incr = True
        while do_incr and max_cur_length < max_length:
          sess.run(model.cur_length_incr_op)
          for t in tasks:
            if data.train_set[t]: do_incr = False
239
240
241
242
        # Forget last perplexities if we're not yet at the end.
        if max_cur_length < max_length:
          prev_acc_perp.append(1000000)
        # Either increase pull or, if it's large, average parameters.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
243
244
245
246
247
        if pull < 1:
          sess.run(model.pull_incr_op)
        else:
          data.print_out("  Averaging parameters.")
          sess.run([model.avg_op, model.lr_decay_op])
248
249
250
251
252
253
254
255

      # Lower learning rate if we're worse than the last 3 checkpoints.
      acc_perp = data.safe_exp(acc_loss)
      if acc_perp > max(prev_acc_perp[-3:]):
        sess.run(model.lr_decay_op)
      prev_acc_perp.append(acc_perp)

      # Save checkpoint.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
256
257
258
      checkpoint_path = os.path.join(checkpoint_dir, "neural_gpu.ckpt")
      model.saver.save(sess, checkpoint_path,
                       global_step=model.global_step)
259

Lukasz Kaiser's avatar
Lukasz Kaiser committed
260
261
262
263
      # Run evaluation.
      bound = data.bins[-1] + 1
      for t in tasks:
        l = min_length
264
265
266
        while l < max_length + EXTRA_EVAL and l < bound:
          _, seq_err, _ = single_test(l, model, sess, t,
                                      FLAGS.nprint, batch_size)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
267
268
269
          l += 1
          while l < bound + 1 and not data.test_set[t][l]:
            l += 1
270
271
272
273
        if seq_err < 0.5:  # Run larger test if we're good enough.
          _, seq_err = multi_test(data.forward_max, model, sess, t,
                                  FLAGS.nprint, batch_size * 4)
      if seq_err < 0.01:  # Super-large test on 1-task large-forward models.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
274
275
276
277
278
279
280
        if data.forward_max > 4000 and len(tasks) == 1:
          multi_test(data.forward_max, model, sess, tasks[0], FLAGS.nprint,
                     batch_size * 16, 0)


def animate(l, test_data, anim_size):
  """Create animation for the given data (hacky matplotlib use)."""
281
282
283
284
  xf = 12  # Extra frames to slow down at start and end.
  fps = 2  # Frames per step.

  # Make the figure.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
285
286
287
288
289
290
  fig = plt.figure(figsize=(16, 9), facecolor="white")
  ax = fig.add_axes([0, 0, 1, 1], frameon=False, zorder=2)
  ax.set_xticks([i * 24-0.5 for i in xrange(4)])
  ax.set_xticklabels([])
  ax.set_yticks([i - 0.5 for i in xrange(l+1)])
  ax.grid(which="major", axis="both", linestyle="-", color="black")
291
  # We need text fields.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
292
293
294
295
296
297
298
299
300
301
302
  text_fields = []
  text_size = 24*32/l
  for y in xrange(l):
    text_fields.append(ax.text(
        11.25, y + 0.15, "", color="g", ha="center", va="center",
        bbox={"facecolor": "b", "alpha": 0.01, "pad": 24 * text_size},
        size=text_size - (4 * 32 / l), animated=True))
  im = ax.imshow(np.zeros_like(test_data[0][0][0]), vmin=-1.0,
                 vmax=1.0, cmap="gray", aspect="auto", origin="upper",
                 interpolation="none", animated=True)
  im.set_zorder(1)
303
304

  # Main animation step.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
  def animation_update(frame_no, test_data, xf, im, text_fields):
    """Update an animation frame."""
    steps, inpt, out_raw = test_data
    length = len(steps)
    batch = frame_no / (fps * (l+4*xf))
    index = int((frame_no % (fps * (l+4*xf))) / fps)
    # Cut output after first padding.
    out = [out_raw[i][batch] for i in xrange(len(text_fields))]
    if 0 in out:
      i = out.index(0)
      out = out[0:i] + [0 for _ in xrange(len(out) - i)]
    # Show the state after the first frames.
    if index >= 2*xf:
      im.set_array(steps[min(length - 1, index - 2*xf)][batch])
      for i, t in enumerate(text_fields):
        if index - 2*xf < length:
          t.set_text("")
        else:
323
          t.set_text(data.to_symbol(out[i]))
Lukasz Kaiser's avatar
Lukasz Kaiser committed
324
325
    else:
      for i, t in enumerate(text_fields):
326
        t.set_text(data.to_symbol(inpt[i][batch]) if index < xf else "")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
327
328
329
330
331
      if index < xf:
        im.set_array(np.zeros_like(steps[0][0]))
      else:
        im.set_array(steps[0][batch])
    return im,
332
333

  # Create the animation and save to mp4.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
  animation = anim.FuncAnimation(
      fig, animation_update, blit=True, frames=(l+4*xf)*anim_size*fps,
      interval=500/fps, fargs=(test_data, xf, im, text_fields))
  animation.save("/tmp/neural_gpu.mp4", writer="mencoder", fps=4*fps, dpi=3*80)


def evaluate():
  """Evaluate an existing model."""
  batch_size = FLAGS.batch_size
  tasks = FLAGS.task.split("-")
  with tf.Session() as sess:
    model, min_length, max_length, _, _ = initialize(sess)
    bound = data.bins[-1] + 1
    for t in tasks:
      l = min_length
349
350
      while l < max_length + EXTRA_EVAL and l < bound:
        _, seq_err, _ = single_test(l, model, sess, t, FLAGS.nprint, batch_size)
Lukasz Kaiser's avatar
Lukasz Kaiser committed
351
352
353
354
355
356
357
358
        l += 1
        while l < bound + 1 and not data.test_set[t][l]:
          l += 1
      # Animate.
      anim_size = 2
      _, _, test_data = single_test(l, model, sess, t, 0, anim_size)
      animate(l, test_data, anim_size)
      # More tests.
359
360
361
      _, seq_err = multi_test(data.forward_max, model, sess, t, FLAGS.nprint,
                              batch_size * 4)
    if seq_err < 0.01:  # Super-test if we're very good and in large-test mode.
Lukasz Kaiser's avatar
Lukasz Kaiser committed
362
363
364
365
366
367
368
369
370
      if data.forward_max > 4000 and len(tasks) == 1:
        multi_test(data.forward_max, model, sess, tasks[0], FLAGS.nprint,
                   batch_size * 64, 0)


def interactive():
  """Interactively probe an existing model."""
  with tf.Session() as sess:
    model, _, _, _, _ = initialize(sess)
371
    sys.stdout.write("Input to Neural GPU, e.g., 0 1. Use -1 for PAD.\n")
Lukasz Kaiser's avatar
Lukasz Kaiser committed
372
373
374
375
    sys.stdout.write("> ")
    sys.stdout.flush()
    inpt = sys.stdin.readline()
    while inpt:
376
      ids = [data.to_id(s) for s in inpt.strip().split()]
Lukasz Kaiser's avatar
Lukasz Kaiser committed
377
378
379
380
      inpt, target = data.get_batch(len(ids), 1, False, "",
                                    preset=(ids, [0 for _ in ids]))
      _, res, _, _ = model.step(sess, inpt, target, False)
      res = [np.argmax(o, axis=1) for o in res]
381
382
      res = [o for o in res[:len(ids)] if o > 0]
      print "  " + " ".join([data.to_symbol(output[0]) for output in res])
Lukasz Kaiser's avatar
Lukasz Kaiser committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
      sys.stdout.write("> ")
      sys.stdout.flush()
      inpt = sys.stdin.readline()


def main(_):
  if FLAGS.mode == 0:
    train()
  elif FLAGS.mode == 1:
    evaluate()
  else:
    interactive()

if __name__ == "__main__":
  tf.app.run()